Treuner-Lange Anke, Zheng Weili, Viljoen Albertus, Lindow Steffi, Herfurth Marco, Dufrêne Yves F, Søgaard-Andersen Lotte, Egelman Edward H
bioRxiv. 2023 Jul 22:2023.07.22.550172. doi: 10.1101/2023.07.22.550172.
Type IV pili (T4P) are ubiquitous bacterial cell surface filaments important for surface motility, adhesion to biotic and abiotic surfaces, DNA uptake, biofilm formation, and virulence. T4P are built from thousands of copies of the major pilin subunit and tipped by a complex composed of minor pilins and in some systems also the PilY1 adhesin. While the major pilins of structurally characterized T4P have lengths of up to 161 residues, the major pilin PilA of is unusually large with 208 residues. All major pilins have a highly conserved N-terminal domain and a highly variable C-terminal domain, and the additional residues in the PilA are due to a larger C-terminal domain. We solved the structure of the T4P (T4P ) at a resolution of 3.0 Å using cryo-electron microscopy (cryo-EM). The T4P follows the structural blueprint observed in other T4P with the pilus core comprised of the extensively interacting N-terminal α1-helices while the globular domains decorate the T4P surface. The atomic model of PilA built into this map shows that the large C-terminal domain has much more extensive intersubunit contacts than major pilins in other T4P. As expected from these greater contacts, the bending and axial stiffness of the T4P is significantly higher than that of other T4P and supports T4P-dependent motility on surfaces of different stiffnesses. Notably, T4P variants with interrupted intersubunit interfaces had decreased bending stiffness and strongly reduced motility on all surfaces. These observations support an evolutionary scenario whereby the large major pilin enables the formation of a rigid T4P that expands the environmental conditions in which the T4P system functions.
IV型菌毛(T4P)是普遍存在于细菌细胞表面的丝状结构,对表面运动、黏附生物和非生物表面、DNA摄取、生物膜形成及毒力起着重要作用。T4P由数千个主要菌毛蛋白亚基拷贝构建而成,其顶端是一个由次要菌毛蛋白组成的复合体,在某些系统中还包括PilY1黏附素。虽然已解析结构的T4P的主要菌毛蛋白长度可达161个残基,但[具体细菌名称]的主要菌毛蛋白PilA异常大,有208个残基。所有主要菌毛蛋白都有一个高度保守的N端结构域和一个高度可变的C端结构域,[具体细菌名称]的PilA中额外的残基是由于C端结构域更大。我们使用冷冻电子显微镜(cryo-EM)以3.0 Å的分辨率解析了[具体细菌名称]的T4P(T4P[具体细菌名称])的结构。T4P[具体细菌名称]遵循其他T4P中观察到的结构蓝图,菌毛核心由广泛相互作用的N端α1螺旋组成,而球状结构域修饰T4P表面。嵌入此图谱的PilA原子模型表明,大的C端结构域比其他T4P中的主要菌毛蛋白具有更广泛的亚基间接触。正如从这些更多接触所预期的那样,T4P[具体细菌名称]的弯曲和轴向刚度明显高于其他T4P,并支持在不同刚度表面上依赖T4P的运动。值得注意的是,具有中断亚基间界面的T4P[具体细菌名称]变体弯曲刚度降低,在所有表面上的运动能力都大幅降低。这些观察结果支持了一种进化情景,即大的主要菌毛蛋白能够形成刚性的T4P,从而扩大了T4P系统发挥功能的环境条件。