文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

整合 scRNA 和 bulk-RNA 测序为分析肾透明细胞癌肿瘤异质性开发了细胞衰老特征。

Integrating scRNA and bulk-RNA sequencing develops a cell senescence signature for analyzing tumor heterogeneity in clear cell renal cell carcinoma.

机构信息

Department of Pediatric Oncology Surgery, Zhengzhou Key Laboratory of Precise Diagnosis and Treatment of Children's Malignant Tumors, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China.

Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China.

出版信息

Front Immunol. 2023 Jul 12;14:1199002. doi: 10.3389/fimmu.2023.1199002. eCollection 2023.


DOI:10.3389/fimmu.2023.1199002
PMID:37503331
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10370498/
Abstract

INTRODUCTION: Cellular senescence (CS) plays a critical role in cancer development, including clear cell renal cell carcinoma (ccRCC). Traditional RNA sequencing cannot detect precise molecular composition changes within tumors. This study aimed to analyze cellular senescence's biochemical characteristics in ccRCC using single RNA sequencing (ScRNA-seq) and traditional RNA sequencing (Bulk RNA-seq). METHODS: Researchers analyzed the biochemical characteristics of cellular senescence in ccRCC using ScRNA-seq and Bulk RNA-seq. They combined these approaches to identify differences between malignant and non-malignant phenotypes in ccRCC across three senescence-related pathways. Genes from these pathways were used to identify molecular subtypes associated with senescence, and a new risk model was constructed. The function of the gene DUSP1 in ccRCC was validated through biological experiments. RESULTS: The combined analysis of ScRNA-seq and Bulk RNA-seq revealed significant differences between malignant and non-malignant phenotypes in ccRCC across three senescence-related pathways. Researchers identified genes from these pathways to identify molecular subtypes associated with senescence, constructing a new risk model. Different subgroups showed significant differences in prognosis level, clinical stage and grade, immune infiltration, immunotherapy, and drug sensitivity. DISCUSSION: Senescence signature markers are practical biomarkers and predictors of molecular typing in ccRCC. Differences in prognosis level, clinical stage and grade, immune infiltration, immunotherapy, and drug sensitivity between different subgroups indicate that this approach could provide valuable insights into senescence-related treatment options and prognostic assessment for patients with ccRCC. The function of the gene DUSP1 in ccRCC was validated through biological experiments, confirming its feasibility as a novel biomarker for ccRCC. These findings suggest that targeted therapies based on senescence-related mechanisms could be an effective treatment option for ccRCC.

摘要

简介:细胞衰老(CS)在癌症发展中起着关键作用,包括透明细胞肾细胞癌(ccRCC)。传统的 RNA 测序无法检测肿瘤内精确的分子组成变化。本研究旨在使用单细胞 RNA 测序(ScRNA-seq)和传统 RNA 测序(Bulk RNA-seq)分析 ccRCC 中细胞衰老的生化特征。

方法:研究人员使用 ScRNA-seq 和 Bulk RNA-seq 分析了 ccRCC 中细胞衰老的生化特征。他们将这些方法结合起来,鉴定了三个与衰老相关途径中 ccRCC 的恶性和非恶性表型之间的差异。这些途径中的基因用于鉴定与衰老相关的分子亚型,并构建了一个新的风险模型。通过生物学实验验证了基因 DUSP1 在 ccRCC 中的功能。

结果:ScRNA-seq 和 Bulk RNA-seq 的联合分析揭示了三个与衰老相关途径中 ccRCC 的恶性和非恶性表型之间的显著差异。研究人员从这些途径中鉴定出与衰老相关的基因,构建了一个新的风险模型。不同亚组在预后水平、临床分期和分级、免疫浸润、免疫治疗和药物敏感性方面表现出显著差异。

讨论:衰老特征标志物是 ccRCC 分子分型的实用生物标志物和预测因子。不同亚组之间预后水平、临床分期和分级、免疫浸润、免疫治疗和药物敏感性的差异表明,这种方法可以为 ccRCC 提供有价值的关于衰老相关治疗选择和预后评估的见解。通过生物学实验验证了基因 DUSP1 在 ccRCC 中的功能,证实了其作为 ccRCC 新型生物标志物的可行性。这些发现表明,基于衰老相关机制的靶向治疗可能是 ccRCC 的一种有效治疗选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e211/10370498/6aa22b25bc4b/fimmu-14-1199002-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e211/10370498/8443c783d815/fimmu-14-1199002-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e211/10370498/4d27d77c6e00/fimmu-14-1199002-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e211/10370498/43aba5b84826/fimmu-14-1199002-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e211/10370498/944b291fd3ed/fimmu-14-1199002-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e211/10370498/42c14ae3737c/fimmu-14-1199002-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e211/10370498/1349ee1eb4ea/fimmu-14-1199002-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e211/10370498/3f4a5e2d0ec7/fimmu-14-1199002-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e211/10370498/4cd242dcba58/fimmu-14-1199002-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e211/10370498/39f5ba7532cd/fimmu-14-1199002-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e211/10370498/6913ae5315ca/fimmu-14-1199002-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e211/10370498/c09fa6741428/fimmu-14-1199002-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e211/10370498/78d86f12900b/fimmu-14-1199002-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e211/10370498/ec0e854ddfb4/fimmu-14-1199002-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e211/10370498/6aa22b25bc4b/fimmu-14-1199002-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e211/10370498/8443c783d815/fimmu-14-1199002-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e211/10370498/4d27d77c6e00/fimmu-14-1199002-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e211/10370498/43aba5b84826/fimmu-14-1199002-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e211/10370498/944b291fd3ed/fimmu-14-1199002-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e211/10370498/42c14ae3737c/fimmu-14-1199002-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e211/10370498/1349ee1eb4ea/fimmu-14-1199002-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e211/10370498/3f4a5e2d0ec7/fimmu-14-1199002-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e211/10370498/4cd242dcba58/fimmu-14-1199002-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e211/10370498/39f5ba7532cd/fimmu-14-1199002-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e211/10370498/6913ae5315ca/fimmu-14-1199002-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e211/10370498/c09fa6741428/fimmu-14-1199002-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e211/10370498/78d86f12900b/fimmu-14-1199002-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e211/10370498/ec0e854ddfb4/fimmu-14-1199002-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e211/10370498/6aa22b25bc4b/fimmu-14-1199002-g014.jpg

相似文献

[1]
Integrating scRNA and bulk-RNA sequencing develops a cell senescence signature for analyzing tumor heterogeneity in clear cell renal cell carcinoma.

Front Immunol. 2023

[2]
Comprehensive analysis of cellular senescence-related genes in the prognosis, tumor microenvironment, and immunotherapy/chemotherapy of clear cell renal cell carcinoma.

Front Immunol. 2022

[3]
Unraveling the prognostic significance and molecular characteristics of tumor-infiltrating B lymphocytes in clear cell renal cell carcinoma through a comprehensive bioinformatics analysis.

Front Immunol. 2023

[4]
SPCS, a Novel Classifier System Based on Senescence Axis Regulators Reveals Tumor Microenvironment Heterogeneity and Guides Frontline Therapy for Clear Cell Renal Carcinoma.

Clin Genitourin Cancer. 2024-4

[5]
Senescence gene expression in clear cell renal cell carcinoma: Role of tumor immune microenvironment and senescence-associated survival prediction.

Medicine (Baltimore). 2023-10-6

[6]
Development and validation of a metastasis-associated prognostic signature based on single-cell RNA-seq in clear cell renal cell carcinoma.

Aging (Albany NY). 2019-11-20

[7]
Integrating Bulk and Single-Cell RNA-Seq Data to Identify Prognostic Features Related to Activated Dendritic Cells in Clear-Cell Renal-Cell Carcinoma.

Int J Mol Sci. 2024-8-26

[8]
Identification of a differentiation-related prognostic nomogram based on single-cell RNA sequencing in clear cell renal cell carcinoma.

Sci Rep. 2022-6-29

[9]
Identification and Validation of Cytotoxicity-Related Features to Predict Prognostic and Immunotherapy Response in Patients with Clear Cell Renal Cell Carcinoma.

Genet Res (Camb). 2024

[10]
Comprehensive analysis of scRNA-Seq and bulk RNA-Seq reveals dynamic changes in the tumor immune microenvironment of bladder cancer and establishes a prognostic model.

J Transl Med. 2023-3-27

引用本文的文献

[1]
Cellular senescence in cancer: from mechanism paradoxes to precision therapeutics.

Mol Cancer. 2025-8-8

[2]
A transcriptome-based human universal senescence index (hUSI) robustly predicts cellular senescence under various conditions.

Nat Aging. 2025-5-29

[3]
A machine learning approach identifies cellular senescence on transcriptome data of human cells in vitro.

Geroscience. 2024-12-30

[4]
Identification of a senescence-related transcriptional signature to uncover molecular subtypes and key genes in hepatocellular carcinoma.

PLoS One. 2024

[5]
Transcriptome analysis revealed a novel nine-gene prognostic risk score of clear cell renal cell carcinoma.

Medicine (Baltimore). 2024-9-27

[6]
Novel molecular hepatocellular carcinoma subtypes and RiskScore utilizing apoptosis-related genes.

Sci Rep. 2024-2-16

本文引用的文献

[1]
Schwann cell-derived exosomes containing MFG-E8 modify macrophage/microglial polarization for attenuating inflammation via the SOCS3/STAT3 pathway after spinal cord injury.

Cell Death Dis. 2023-1-30

[2]
CX3CL1 promotes cell sensitivity to ferroptosis and is associated with the tumor microenvironment in clear cell renal cell carcinoma.

BMC Cancer. 2022-11-17

[3]
Cellular milieu in clear cell renal cell carcinoma.

Front Oncol. 2022-10-14

[4]
Identification of Ligand-Receptor Pairs Associated With Tumour Characteristics in Clear Cell Renal Cell Carcinoma.

Front Immunol. 2022

[5]
Decoding the multicellular ecosystem of vena caval tumor thrombus in clear cell renal cell carcinoma by single-cell RNA sequencing.

Genome Biol. 2022-3-31

[6]
Exploiting senescence for the treatment of cancer.

Nat Rev Cancer. 2022-6

[7]
Single-cell transcriptomics reveals a low CD8 T cell infiltrating state mediated by fibroblasts in recurrent renal cell carcinoma.

J Immunother Cancer. 2022-2

[8]
TERT activates endogenous retroviruses to promote an immunosuppressive tumour microenvironment.

EMBO Rep. 2022-4-5

[9]
The Extracellular Matrix Environment of Clear Cell Renal Cell Carcinoma Determines Cancer Associated Fibroblast Growth.

Cancers (Basel). 2021-11-23

[10]
Single-Cell RNA Sequencing in Multiple Pathologic Types of Renal Cell Carcinoma Revealed Novel Potential Tumor-Specific Markers.

Front Oncol. 2021-10-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索