文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能在先天性黑色素瘤初筛中的应用:快速随机森林算法在皮肤病理中的新用途。

Artificial Intelligence Applied to a First Screening of Naevoid Melanoma: A New Use of Fast Random Forest Algorithm in Dermatopathology.

机构信息

Section of Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy.

LUM Enterprise srl, S.S. 100-Km.18, Parco il Baricentro, 70010 Bari, Italy.

出版信息

Curr Oncol. 2023 Jun 23;30(7):6066-6078. doi: 10.3390/curroncol30070452.


DOI:10.3390/curroncol30070452
PMID:37504312
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10378276/
Abstract

Malignant melanoma (MM) is the "great mime" of dermatopathology, and it can present such rare variants that even the most experienced pathologist might miss or misdiagnose them. Naevoid melanoma (NM), which accounts for about 1% of all MM cases, is a constant challenge, and when it is not diagnosed in a timely manner, it can even lead to death. In recent years, artificial intelligence has revolutionised much of what has been achieved in the biomedical field, and what once seemed distant is now almost incorporated into the diagnostic therapeutic flow chart. In this paper, we present the results of a machine learning approach that applies a fast random forest (FRF) algorithm to a cohort of naevoid melanomas in an attempt to understand if and how this approach could be incorporated into the business process modelling and notation (BPMN) approach. The FRF algorithm provides an innovative approach to formulating a clinical protocol oriented toward reducing the risk of NM misdiagnosis. The work provides the methodology to integrate FRF into a mapped clinical process.

摘要

恶性黑素瘤(MM)是皮肤病理学的“伟大模仿者”,它可能表现出如此罕见的变异,即使是最有经验的病理学家也可能会错过或误诊。痣样黑素瘤(NM)约占所有 MM 病例的 1%,是一个持续的挑战,如果不能及时诊断,甚至可能导致死亡。近年来,人工智能彻底改变了生物医学领域的许多成果,曾经遥不可及的现在几乎都被纳入了诊断治疗流程图中。在本文中,我们展示了一种机器学习方法的结果,该方法应用快速随机森林(FRF)算法对一组痣样黑素瘤进行分析,试图了解这种方法是否以及如何可以纳入业务流程建模和符号(BPMN)方法。FRF 算法为制定以降低 NM 误诊风险为导向的临床方案提供了一种创新方法。这项工作提供了将 FRF 集成到映射临床流程中的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/482c/10378276/e618ae2c7bd0/curroncol-30-00452-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/482c/10378276/315a173bbb12/curroncol-30-00452-g0A1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/482c/10378276/eaab8d440f9b/curroncol-30-00452-g0A2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/482c/10378276/1bd2ad819597/curroncol-30-00452-g0A3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/482c/10378276/c7d997d63d79/curroncol-30-00452-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/482c/10378276/50b5898c4a6f/curroncol-30-00452-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/482c/10378276/a261c99c9bca/curroncol-30-00452-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/482c/10378276/6b4fa1939d4b/curroncol-30-00452-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/482c/10378276/e618ae2c7bd0/curroncol-30-00452-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/482c/10378276/315a173bbb12/curroncol-30-00452-g0A1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/482c/10378276/eaab8d440f9b/curroncol-30-00452-g0A2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/482c/10378276/1bd2ad819597/curroncol-30-00452-g0A3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/482c/10378276/c7d997d63d79/curroncol-30-00452-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/482c/10378276/50b5898c4a6f/curroncol-30-00452-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/482c/10378276/a261c99c9bca/curroncol-30-00452-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/482c/10378276/6b4fa1939d4b/curroncol-30-00452-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/482c/10378276/e618ae2c7bd0/curroncol-30-00452-g005.jpg

相似文献

[1]
Artificial Intelligence Applied to a First Screening of Naevoid Melanoma: A New Use of Fast Random Forest Algorithm in Dermatopathology.

Curr Oncol. 2023-6-23

[2]
Dermatopathology of Malignant Melanoma in the Era of Artificial Intelligence: A Single Institutional Experience.

Diagnostics (Basel). 2022-8-15

[3]
Artificial intelligence in dermatopathology: Diagnosis, education, and research.

J Cutan Pathol. 2021-8

[4]
Prediction of Breast Cancer Through Random Forest.

Curr Med Imaging. 2023

[5]
Artificial Intelligence in Melanoma Dermatopathology: A Review of Literature.

Am J Dermatopathol. 2024-2-1

[6]
Artificial intelligence: Its role in dermatopathology.

Indian J Dermatol Venereol Leprol. 2023

[7]
Artificial intelligence for dermatopathology: Current trends and the road ahead.

Semin Diagn Pathol. 2022-7

[8]
[The Rise of Artificial Intelligence - High Prediction Accuracy in Early Detection of Pigmented Melanoma].

Laryngorhinootologie. 2023-7

[9]
Artificial Intelligence and Its Effect on Dermatologists' Accuracy in Dermoscopic Melanoma Image Classification: Web-Based Survey Study.

J Med Internet Res. 2020-9-11

[10]
Integrating Artificial and Human Intelligence: A Partnership for Responsible Innovation in Biomedical Engineering and Medicine.

OMICS. 2020-5

引用本文的文献

[1]
Machine learning to detect melanoma exploiting nuclei morphology and Spatial organization.

Sci Rep. 2025-7-1

[2]
Artificial Intelligence in the Histopathological Assessment of Non-Neoplastic Skin Disorders: A Narrative Review with Future Perspectives.

Med Sci (Basel). 2025-6-1

[3]
Pre-screening of endomysial microvessel density by fast random forest image processing machine learning algorithm accelerates recognition of a modified vascular network in idiopathic inflammatory myopathies.

Diagn Pathol. 2025-1-31

[4]
Application of Digital Analysis for Assessment of Coronary Sub-Occlusions in Autopsy Pathology: It Is Time to Move beyond Histology Alone.

Diagnostics (Basel). 2024-9-24

本文引用的文献

[1]
Artificial Intelligence in Dermatopathology: An Analysis of Its Practical Application.

Dermatopathology (Basel). 2023-2-16

[2]
Dermatopathology of Malignant Melanoma in the Era of Artificial Intelligence: A Single Institutional Experience.

Diagnostics (Basel). 2022-8-15

[3]
Artificial intelligence for dermatopathology: Current trends and the road ahead.

Semin Diagn Pathol. 2022-7

[4]
Artificial Intelligence in Dermatopathology: New Insights and Perspectives.

Dermatopathology (Basel). 2021-9-1

[5]
Aberrant Expression of Immunohistochemical Markers in Malignant Melanoma: A Review.

Dermatopathology (Basel). 2021-8-3

[6]
The Great Mime: Three Cases of Melanoma with Carcinoid-Like and Paraganglioma-Like Pattern with Emphasis on Differential Diagnosis.

Dermatopathology (Basel). 2021-5-13

[7]
Introduction to Artificial Intelligence and Machine Learning for Pathology.

Arch Pathol Lab Med. 2021-10-1

[8]
Artificial intelligence in dermatopathology: Diagnosis, education, and research.

J Cutan Pathol. 2021-8

[9]
Artificial Intelligence, Big Data and Machine Learning Approaches in Precision Medicine & Drug Discovery.

Curr Drug Targets. 2021

[10]
Attitudes Toward Artificial Intelligence Within Dermatopathology: An International Online Survey.

Front Med (Lausanne). 2020-10-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索