Suppr超能文献

人工智能时代恶性黑色素瘤的皮肤病理学:单机构经验

Dermatopathology of Malignant Melanoma in the Era of Artificial Intelligence: A Single Institutional Experience.

作者信息

Cazzato Gerardo, Massaro Alessandro, Colagrande Anna, Lettini Teresa, Cicco Sebastiano, Parente Paola, Nacchiero Eleonora, Lospalluti Lucia, Cascardi Eliano, Giudice Giuseppe, Ingravallo Giuseppe, Resta Leonardo, Maiorano Eugenio, Vacca Angelo

机构信息

Section of Molecular Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari "Aldo Moro", 70124 Bari, Italy.

LUM Enterprise srl, S.S. 100-Km.18, Parco il Baricentro, 70010 Bari, Italy.

出版信息

Diagnostics (Basel). 2022 Aug 15;12(8):1972. doi: 10.3390/diagnostics12081972.

Abstract

The application of artificial intelligence (AI) algorithms in medicine could support diagnostic and prognostic analyses and decision making. In the field of dermatopathology, there have been various papers that have trained algorithms for the recognition of different types of skin lesions, such as basal cell carcinoma (BCC), seborrheic keratosis (SK) and dermal nevus. Furthermore, the difficulty in diagnosing particular melanocytic lesions, such as Spitz nevi and melanoma, considering the grade of interobserver variability among dermatopathologists, has led to an objective difficulty in training machine learning (ML) algorithms to a totally reliable, reportable and repeatable level. In this work we tried to train a fast random forest (FRF) algorithm, typically used for the classification of clusters of pixels in images, to highlight anomalous areas classified as melanoma "defects" following the Allen-Spitz criteria. The adopted image vision diagnostic protocol was structured in the following steps: image acquisition by selecting the best zoom level of the microscope; preliminary selection of an image with a good resolution; preliminary identification of macro-areas of defect in each preselected image; identification of a class of a defect in the selected macro-area; training of the supervised machine learning FRF algorithm by selecting the micro-defect in the macro-area; execution of the FRF algorithm to find an image vision performance indicator; and analysis of the output images by enhancing lesion defects. The precision achieved by the FRF algorithm proved to be appropriate with a discordance of 17% with respect to the dermatopathologist, allowing this type of supervised algorithm to be nominated as a help to the dermatopathologist in the challenging diagnosis of malignant melanoma.

摘要

人工智能(AI)算法在医学中的应用有助于支持诊断、预后分析及决策制定。在皮肤病理学领域,已有多篇论文针对不同类型皮肤病变(如基底细胞癌(BCC)、脂溢性角化病(SK)和真皮痣)的识别训练了算法。此外,考虑到皮肤病理学家之间观察者间变异性的程度,诊断特定黑素细胞病变(如Spitz痣和黑色素瘤)存在困难,这导致在将机器学习(ML)算法训练到完全可靠、可报告和可重复的水平方面存在客观困难。在这项工作中,我们尝试训练一种通常用于图像中像素聚类分类的快速随机森林(FRF)算法,以突出按照艾伦 - 斯皮茨标准被分类为黑色素瘤“缺陷”的异常区域。所采用的图像视觉诊断方案按以下步骤构建:通过选择显微镜的最佳放大倍数进行图像采集;初步选择分辨率良好的图像;初步识别每个预选图像中的宏观缺陷区域;识别所选宏观区域中的缺陷类别;通过在宏观区域中选择微缺陷来训练监督机器学习FRF算法;执行FRF算法以找到图像视觉性能指标;以及通过增强病变缺陷来分析输出图像。FRF算法所达到的精度被证明是合适的,与皮肤病理学家的诊断不一致率为17%,这使得这种类型的监督算法可以被提名为在恶性黑色素瘤的具有挑战性的诊断中帮助皮肤病理学家的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c1b/9407151/7560d2188394/diagnostics-12-01972-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验