Ghica Mariana Emilia, Mandinga Jandira G S, Linhares Teresa, Almeida Cláudio M R, Durães Luisa
University of Coimbra, CIEPQPF, Department of Chemical Engineering, 3030-790 Coimbra, Portugal.
Gels. 2023 Jun 30;9(7):535. doi: 10.3390/gels9070535.
Reinforcement of silica aerogels, remarkable lightweight mesoporous materials with outstanding insulation performance, is still a challenging research topic. Among the strategies used to overcome their brittleness, one of the most effective is the manufacturing of aerogel composites with embedded fibres. In this work, the incorporation of nanofibres together with microfibres in a tetraethoxysilane-vinyltrimethoxysilane matrix is investigated for the first time for the development of novel aerogel nanocomposites. The nanofibres, synthesized from different aramid fibres, including Kevlar pulp, Technora, Teijinconex and Twaron fibres, were used in different combinations with microaramids and the resulting nanocomposites were thoroughly investigated for their physicochemical and thermomechanical features. The properties depended on the type and amount of the nano/microfibre used. While the microfibres exhibited low interaction with the silica matrix, the higher surface of the nanofibres ensured increased contact with the gel matrix. A low bulk density of 161 kg m and thermal conductivity of 38.3 mW m K (Hot Disk) was achieved when combining the nanofibres obtained from Kevlar pulp with the Technora or Teijinconex long fibres. The nanofibres showed higher dispersion and random orientation and in combination with microfibres led to the improvement by a factor of three regarding the mechanical properties of the aerogel nanocomposites reinforced only with microfibres. The scale-up process of the samples and simulated tests of thermal cycling and vacuum outgassing successfully conducted indicate good compliance with space applications.
增强二氧化硅气凝胶是一项仍具挑战性的研究课题,二氧化硅气凝胶是一种具有出色隔热性能的轻质中孔材料。在用于克服其脆性的策略中,最有效的方法之一是制造含有嵌入式纤维的气凝胶复合材料。在这项工作中,首次研究了在四乙氧基硅烷 - 乙烯基三甲氧基硅烷基质中同时加入纳米纤维和微纤维,以开发新型气凝胶纳米复合材料。由不同芳纶纤维合成的纳米纤维,包括凯夫拉纸浆、Technora、帝人Coniex和Twaron纤维,与微芳纶以不同组合使用,并对所得纳米复合材料的物理化学和热机械特性进行了全面研究。这些性能取决于所使用的纳米/微纤维的类型和数量。虽然微纤维与二氧化硅基质的相互作用较低,但纳米纤维的较大表面积确保了与凝胶基质的接触增加。当将从凯夫拉纸浆获得的纳米纤维与Technora或帝人Coniex长纤维结合使用时,实现了161 kg/m³的低堆积密度和38.3 mW/(m·K)的热导率(热盘法)。纳米纤维表现出更高的分散性和随机取向,与微纤维结合使用时,相对于仅用微纤维增强的气凝胶纳米复合材料,其机械性能提高了两倍。成功进行的样品放大过程以及热循环和真空除气模拟测试表明,该材料非常适合空间应用。