Suppr超能文献

水杨酸通过丹参 SmNPR1-SmTGA2/SmNPR4 模块调节酚酸生物合成。

Salicylic acid regulates phenolic acid biosynthesis via SmNPR1-SmTGA2/SmNPR4 modules in Salvia miltiorrhiza.

机构信息

College of Life Sciences, Northwest A & F University, Yangling 712100, China.

出版信息

J Exp Bot. 2023 Sep 29;74(18):5736-5751. doi: 10.1093/jxb/erad302.

Abstract

Phenolic acids are the main active ingredients in Salvia miltiorrhiza, which can be used for the treatment of many diseases, particularly cardiovascular diseases. It is known that salicylic acid (SA) can enhance phenolic acid content, but the molecular mechanism of its regulation is still unclear. Nonexpresser of PR genes 1 (NPR1) plays a positive role in the SA signaling pathway. In this study, we identified a SmNPR1 gene that responds to SA induction and systematically investigated its function. We found that SmNPR1 positively affected phenolic acid biosynthesis. Then, we identified a novel TGA transcription factor, SmTGA2, which interacts with SmNPR1. SmTGA2 positively regulates phenolic acid biosynthesis by directly up-regulating SmCYP98A14 expression. After double-gene transgenic analysis and other biochemical assays, it was found that SmNPR1 and SmTGA2 work synergistically to regulate phenolic acid biosynthesis. In addition, SmNPR4 forms a heterodimer with SmNPR1 to inhibit the function of SmNPR1, and SA can alleviate this effect. Collectively, these findings elucidate the molecular mechanism underlying the regulation of phenolic acid biosynthesis by SmNPR1-SmTGA2/SmNPR4 modules and provide novel insights into the SA signaling pathway regulating plant secondary metabolism.

摘要

丹酚酸是丹参的主要活性成分,可用于治疗多种疾病,尤其是心血管疾病。已知水杨酸(SA)可以提高酚酸含量,但调节其的分子机制尚不清楚。无 PR 基因表达蛋白 1(NPR1)在 SA 信号通路中发挥积极作用。本研究鉴定了一个响应 SA 诱导的 SmNPR1 基因,并系统研究了其功能。结果发现 SmNPR1 可正向调控丹酚酸生物合成。然后,我们鉴定了一个新的 TGA 转录因子 SmTGA2,它与 SmNPR1 相互作用。SmTGA2 通过直接上调 SmCYP98A14 的表达正向调控丹酚酸生物合成。通过双基因转基因分析和其他生化测定,发现 SmNPR1 和 SmTGA2 协同作用调节丹酚酸生物合成。此外,SmNPR4 与 SmNPR1 形成异二聚体来抑制 SmNPR1 的功能,而 SA 可以减轻这种效应。总之,这些发现阐明了 SmNPR1-SmTGA2/SmNPR4 模块调节丹酚酸生物合成的分子机制,并为 SA 信号通路调节植物次生代谢提供了新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验