Schulte Robin, Afflerbach Sandra, Paululat Thomas, Ihmels Heiko
Department of Chemistry-Biology, Center of Micro- and Nanochemistry and (Bio-)Technology (Cμ), University of Siegen, Adolf-Reichwein-Str. 2, 57068, Siegen, Germany.
Chair of Thermal and Thermochemical Energy Storage, Technische Universität Berlin, KT2, Marchstrasse 18, 10587, Berlin, Germany.
Angew Chem Int Ed Engl. 2023 Sep 18;62(38):e202309544. doi: 10.1002/anie.202309544. Epub 2023 Aug 17.
Molecular solar thermal energy storage (MOST) systems can convert, store and release solar energy in chemical bonds, i.e., as chemical energy. In this work, phenyl- and naphthyl-linked bis- and tris-norbornadienes are presented as promising MOST systems with very high energy densities. The substrates were synthesized by Suzuki-Miyaura coupling reactions and their absorption properties and characteristic parameters for MOST applications were investigated. The norbornadiene derivatives showed absorption onsets of up to 386 nm and photoisomerization quantum yields of 56 % per photoisomerization event. The resulting quadricyclane products have half-lifes up to 14 d and very high energy densities of up to 734 kJ/kg. Overall, these norbornadienes fulfill necessary criteria for an optimal MOST system and are, therefore, a highly promising basis for the development of materials for efficient solar energy conversion and storage.
分子太阳能热能存储(MOST)系统可以在化学键中,即作为化学能,来转换、存储和释放太阳能。在这项工作中,苯基和萘基连接的双降冰片二烯和三降冰片二烯被展示为具有非常高能量密度的、有前景的MOST系统。这些底物通过铃木-宫浦偶联反应合成,并研究了它们在MOST应用中的吸收特性和特征参数。降冰片二烯衍生物显示出高达386 nm的吸收起始波长,每次光异构化事件的光异构化量子产率为56%。生成的四环烷产物半衰期长达14天,能量密度高达734 kJ/kg。总体而言,这些降冰片二烯满足了优化MOST系统的必要标准,因此,是开发高效太阳能转换和存储材料的极具前景的基础。
Angew Chem Int Ed Engl. 2023-9-18
Beilstein J Org Chem. 2022-4-1
Chemistry. 2024-6-20
Angew Chem Int Ed Engl. 2025-1-10
Adv Sci (Weinh). 2019-4-25
Chem Commun (Camb). 2014-5-25
Angew Chem Int Ed Engl. 2025-8-25
Beilstein J Org Chem. 2025-4-22
Chem Sci. 2024-9-26
Angew Chem Int Ed Engl. 2025-1-10
Molecules. 2024-5-27
J Mater Chem A Mater. 2024-1-11