Suppr超能文献

基于蒽的固态分子太阳能热储能系统的自激活能量释放级联

Self-Activated Energy Release Cascade from Anthracene-Based Solid-State Molecular Solar Thermal Energy Storage Systems.

作者信息

Chakraborty Subhayan, Nguyen Han P Q, Usuba Junichi, Choi Ji Yong, Sun Zhenhuan, Raju Cijil, Sigelmann Gustavo, Qiu Qianfeng, Cho Sungwon, Tenney Stephanie M, Shulenberger Katherine E, Schmidt-Rohr Klaus, Park Jihye, Han Grace G D

机构信息

Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA.

Department of Chemistry, University of Colorado Boulder, 215 UCB, Boulder, CO 80309, USA.

出版信息

Chem. 2024 Nov 14;10(11):3309-3322. doi: 10.1016/j.chempr.2024.06.033. Epub 2024 Jul 22.

Abstract

We introduce donor-acceptor substituted anthracenes as effective molecular solar thermal energy storage compounds that operate exclusively in the solid state. The donor-acceptor anthracenes undergo visible light-induced [4+4] cycloaddition reaction, producing metastable cycloadducts, dianthracenes with quaternary carbons, and storing photon energy. The triggered cycloreversion of dianthracenes to anthracenes discharges the stored energy as heat in the order of 100 kJ/mol (200 J/g). The series of compounds displays remarkable self-heating, or cascading heat release, upon the initial triggering. Such self-activated energy release is enabled by the large energy storage in dianthracenes, low activation energy for their thermal reversion, and effective heat transfer to unreacted molecules in the solid state. This process mirroring the self-ignition of fossil fuels opens up opportunities to use dianthracenes as effective and renewable solid-state fuels that can release energy rapidly and completely upon initial activation.

摘要

我们引入供体-受体取代的蒽作为仅在固态下起作用的有效分子太阳能热能存储化合物。供体-受体蒽会发生可见光诱导的[4+4]环加成反应,生成亚稳态环加成物、具有季碳的二蒽,并储存光子能量。二蒽触发的环化逆转将储存的能量以约100 kJ/mol(200 J/g)的热量形式释放出来。该系列化合物在初始触发时表现出显著的自热或级联热释放。这种自激活能量释放是由二蒽中的大量能量存储、其热逆转的低活化能以及向固态中未反应分子的有效热传递实现的。这一类似于化石燃料自燃的过程为将二蒽用作有效且可再生的固态燃料开辟了机会,这些燃料在初始激活时能够快速且完全地释放能量。

相似文献

1
Self-Activated Energy Release Cascade from Anthracene-Based Solid-State Molecular Solar Thermal Energy Storage Systems.
Chem. 2024 Nov 14;10(11):3309-3322. doi: 10.1016/j.chempr.2024.06.033. Epub 2024 Jul 22.
2
Emerging solid-state cycloaddition chemistry for molecular solar thermal energy storage.
Chem Sci. 2024 Oct 1;15(42):17273-83. doi: 10.1039/d4sc05723f.
3
Arylazopyrazole-Based Dendrimer Solar Thermal Fuels: Stable Visible Light Storage and Controllable Heat Release.
ACS Appl Mater Interfaces. 2021 May 19;13(19):22655-22663. doi: 10.1021/acsami.1c05163. Epub 2021 May 10.
4
Large and long-term photon energy storage in diazetidines [2+2] photocycloaddition.
Chem Sci. 2024 Oct 22;15(45):18846-54. doi: 10.1039/d4sc05374e.
5
Engineering of Norbornadiene/Quadricyclane Photoswitches for Molecular Solar Thermal Energy Storage Applications.
Acc Chem Res. 2020 Aug 18;53(8):1478-1487. doi: 10.1021/acs.accounts.0c00235. Epub 2020 Jul 14.
6
Broadband-Light-Induced [2+2] Cycloaddition and Thermoinduced Cycloreversion-Powered Dynamic Molecular Crystals.
Angew Chem Int Ed Engl. 2025 Apr 17;64(17):e202502107. doi: 10.1002/anie.202502107. Epub 2025 Feb 26.
7
Molecular Solar Thermal Systems towards Phase Change and Visible Light Photon Energy Storage.
Small. 2022 Apr;18(16):e2107473. doi: 10.1002/smll.202107473. Epub 2022 Feb 8.
8
Arylazopyrazoles for Long-Term Thermal Energy Storage and Optically Triggered Heat Release below 0 °C.
J Am Chem Soc. 2020 May 13;142(19):8688-8695. doi: 10.1021/jacs.0c00374. Epub 2020 May 4.
10
Photoswitchable Molecular Rings for Solar-Thermal Energy Storage.
J Phys Chem Lett. 2013 Mar 21;4(6):854-60. doi: 10.1021/jz301877n. Epub 2013 Mar 4.

引用本文的文献

本文引用的文献

1
Breaking the photoswitch speed limit.
Nat Commun. 2023 Nov 20;14(1):7556. doi: 10.1038/s41467-023-43405-w.
2
Visible light activated energy storage in solid-state Azo-BF switches.
Chem Sci. 2023 Sep 26;14(41):11359-11364. doi: 10.1039/d3sc03465h. eCollection 2023 Oct 25.
3
Disequilibrating azobenzenes by visible-light sensitization under confinement.
Science. 2023 Sep 22;381(6664):1357-1363. doi: 10.1126/science.adh9059. Epub 2023 Sep 21.
4
Bis- and Tris-norbornadienes with High Energy Densities for Efficient Molecular Solar Thermal Energy Storage.
Angew Chem Int Ed Engl. 2023 Sep 18;62(38):e202309544. doi: 10.1002/anie.202309544. Epub 2023 Aug 17.
5
Mechanical properties and peculiarities of molecular crystals.
Chem Soc Rev. 2023 May 9;52(9):3098-3169. doi: 10.1039/d2cs00481j.
6
Frontal Polymerizations: From Chemical Perspectives to Macroscopic Properties and Applications.
Chem Rev. 2023 Mar 22;123(6):3237-3298. doi: 10.1021/acs.chemrev.2c00686. Epub 2023 Feb 24.
7
Photo-controllable heterostructured crystals of metal-organic frameworks reversible photocycloaddition.
Chem Sci. 2023 Jan 20;14(7):1852-1860. doi: 10.1039/d2sc06732c. eCollection 2023 Feb 15.
9
Altering the Properties of Spiropyran Switches Using Coordination Cages with Different Symmetries.
J Am Chem Soc. 2022 Nov 23;144(46):21244-21254. doi: 10.1021/jacs.2c08901. Epub 2022 Nov 15.
10
Photocontrolled Energy Storage in Azobispyrazoles with Exceptionally Large Light Penetration Depths.
J Am Chem Soc. 2022 Oct 26;144(42):19430-19436. doi: 10.1021/jacs.2c07537. Epub 2022 Oct 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验