文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

聚α-引发酶如何靶向复制体以引发真核 DNA 复制。

How Pol α-primase is targeted to replisomes to prime eukaryotic DNA replication.

机构信息

MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.

MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.

出版信息

Mol Cell. 2023 Aug 17;83(16):2911-2924.e16. doi: 10.1016/j.molcel.2023.06.035. Epub 2023 Jul 27.


DOI:10.1016/j.molcel.2023.06.035
PMID:37506699
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10501992/
Abstract

During eukaryotic DNA replication, Pol α-primase generates primers at replication origins to start leading-strand synthesis and every few hundred nucleotides during discontinuous lagging-strand replication. How Pol α-primase is targeted to replication forks to prime DNA synthesis is not fully understood. Here, by determining cryoelectron microscopy (cryo-EM) structures of budding yeast and human replisomes containing Pol α-primase, we reveal a conserved mechanism for the coordination of priming by the replisome. Pol α-primase binds directly to the leading edge of the CMG (CDC45-MCM-GINS) replicative helicase via a complex interaction network. The non-catalytic PRIM2/Pri2 subunit forms two interfaces with CMG that are critical for in vitro DNA replication and yeast cell growth. These interactions position the primase catalytic subunit PRIM1/Pri1 directly above the exit channel for lagging-strand template single-stranded DNA (ssDNA), revealing why priming occurs efficiently only on the lagging-strand template and elucidating a mechanism for Pol α-primase to overcome competition from RPA to initiate primer synthesis.

摘要

在真核生物 DNA 复制过程中,聚合酶 α-引发酶在复制起始点生成引物,以启动领头链合成,并在不连续的滞后链复制过程中每隔几百个核苷酸进行一次。然而,聚合酶 α-引发酶如何靶向复制叉以启动 DNA 合成,目前还不完全清楚。在这里,通过确定含有聚合酶 α-引发酶的芽殖酵母和人类复制体的冷冻电镜(cryo-EM)结构,我们揭示了复制体协调引发的保守机制。聚合酶 α-引发酶通过复杂的相互作用网络直接与 CMG(CDC45-MCM-GINS)复制解旋酶的前缘结合。非催化性 PRIM2/Pri2 亚基与 CMG 形成两个界面,对于体外 DNA 复制和酵母细胞生长至关重要。这些相互作用将引发酶的催化亚基 PRIM1/Pri1 直接定位在滞后链模板单链 DNA(ssDNA)的出口通道上方,解释了为什么引发只能在滞后链模板上有效进行,并阐明了聚合酶 α-引发酶克服 RPA 竞争以启动引物合成的机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a90b/10501992/c0f888ad80ac/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a90b/10501992/980c37594614/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a90b/10501992/71c262a274bc/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a90b/10501992/fe0d314238ac/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a90b/10501992/72000c0c0f75/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a90b/10501992/05a81ee7ec06/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a90b/10501992/8c5662c1440a/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a90b/10501992/c0f888ad80ac/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a90b/10501992/980c37594614/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a90b/10501992/71c262a274bc/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a90b/10501992/fe0d314238ac/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a90b/10501992/72000c0c0f75/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a90b/10501992/05a81ee7ec06/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a90b/10501992/8c5662c1440a/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a90b/10501992/c0f888ad80ac/gr6.jpg

相似文献

[1]
How Pol α-primase is targeted to replisomes to prime eukaryotic DNA replication.

Mol Cell. 2023-8-17

[2]
A conserved motif in the C-terminal tail of DNA polymerase α tethers primase to the eukaryotic replisome.

J Biol Chem. 2012-5-16

[3]
Molecular choreography of primer synthesis by the eukaryotic Pol α-primase.

Nat Commun. 2023-6-21

[4]
CMG helicase and DNA polymerase ε form a functional 15-subunit holoenzyme for eukaryotic leading-strand DNA replication.

Proc Natl Acad Sci U S A. 2014-10-28

[5]
A common mechanism for recruiting the Rrm3 and RTEL1 accessory helicases to the eukaryotic replisome.

EMBO J. 2024-9

[6]
CryoEM insights into RNA primer synthesis by the human primosome.

FEBS J. 2024-4

[7]
Essential role of the iron-sulfur cluster binding domain of the primase regulatory subunit Pri2 in DNA replication initiation.

Protein Cell. 2015-3

[8]
Ctf4 organizes sister replisomes and Pol α into a replication factory.

Elife. 2019-10-7

[9]
Mechanism of Bidirectional Leading-Strand Synthesis Establishment at Eukaryotic DNA Replication Origins.

Mol Cell. 2018-11-16

[10]
Separable, Ctf4-mediated recruitment of DNA Polymerase α for initiation of DNA synthesis at replication origins and lagging-strand priming during replication elongation.

PLoS Genet. 2020-5-7

引用本文的文献

[1]
The human primosome requires replication protein A when copying DNA with inverted repeats.

Nucleic Acids Res. 2025-8-11

[2]
S-phase checkpoint protects from aberrant replication fork processing and degradation.

Nucleic Acids Res. 2025-7-19

[3]
The B. subtilis replicative polymerases bind the sliding clamp with different strengths to tune their activity in DNA replication.

Nucleic Acids Res. 2025-7-19

[4]
DNA polymerase α/primase extraction from chromatin by VCP/p97 restricts ATR activation during unperturbed DNA replication.

Nat Commun. 2025-7-1

[5]
Structural Basis of Herpesvirus Helicase-Primase Inhibition by Pritelivir and Amenamevir.

bioRxiv. 2025-5-15

[6]
Insights into the synchronization between DNA replication and parental histone recycling.

Biochem Soc Trans. 2025-6-30

[7]
The yeast CST and Polα/primase complexes act in concert to ensure proper telomere maintenance and protection.

Nucleic Acids Res. 2025-4-10

[8]
A conserved phosphorylation mechanism for regulating the interaction between the CMG replicative helicase and its forked DNA substrate.

J Biol Chem. 2025-4

[9]
How similar are the molecular mechanisms of yeast and metazoan genome replication initiation?

Biochem Soc Trans. 2025-3-7

[10]
Competition for the nascent leading strand shapes the requirements for PCNA loading in the replisome.

EMBO J. 2025-4

本文引用的文献

[1]
Structures of human primosome elongation complexes.

Nat Struct Mol Biol. 2023-5

[2]
The mechanism of replication stalling and recovery within repetitive DNA.

Nat Commun. 2022-7-19

[3]
Structure of Tetrahymena telomerase-bound CST with polymerase α-primase.

Nature. 2022-8

[4]
Structures of the human CST-Polα-primase complex bound to telomere templates.

Nature. 2022-8

[5]
Insight into RNA-DNA primer length counting by human primosome.

Nucleic Acids Res. 2022-6-24

[6]
ColabFold: making protein folding accessible to all.

Nat Methods. 2022-6

[7]
Fast and efficient DNA replication with purified human proteins.

Nature. 2022-6

[8]
Cryo-EM structure of the human CST-Polα/primase complex in a recruitment state.

Nat Struct Mol Biol. 2022-8

[9]
Molecular basis for the initiation of DNA primer synthesis.

Nature. 2022-5

[10]
A conserved mechanism for regulating replisome disassembly in eukaryotes.

Nature. 2021-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索