文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

缺氧时细胞内的能量产生和分布。

Intracellular energy production and distribution in hypoxia.

机构信息

Conway Institute of Biomolecular and Biomedical Research and School of Medicine, University College Dublin, Dublin, Ireland.

Conway Institute of Biomolecular and Biomedical Research and School of Medicine, University College Dublin, Dublin, Ireland.

出版信息

J Biol Chem. 2023 Sep;299(9):105103. doi: 10.1016/j.jbc.2023.105103. Epub 2023 Jul 26.


DOI:10.1016/j.jbc.2023.105103
PMID:37507013
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10480318/
Abstract

The hydrolysis of ATP is the primary source of metabolic energy for eukaryotic cells. Under physiological conditions, cells generally produce more than sufficient levels of ATP to fuel the active biological processes necessary to maintain homeostasis. However, mechanisms underpinning the distribution of ATP to subcellular microenvironments with high local demand remain poorly understood. Intracellular distribution of ATP in normal physiological conditions has been proposed to rely on passive diffusion across concentration gradients generated by ATP producing systems such as the mitochondria and the glycolytic pathway. However, subcellular microenvironments can develop with ATP deficiency due to increases in local ATP consumption. Alternatively, ATP production can be reduced during bioenergetic stress during hypoxia. Mammalian cells therefore need to have the capacity to alter their metabolism and energy distribution strategies to compensate for local ATP deficits while also controlling ATP production. It is highly likely that satisfying the bioenergetic requirements of the cell involves the regulated distribution of ATP producing systems to areas of high ATP demand within the cell. Recently, the distribution (both spatially and temporally) of ATP-producing systems has become an area of intense investigation. Here, we review what is known (and unknown) about intracellular energy production and distribution and explore potential mechanisms through which this targeted distribution can be altered in hypoxia, with the aim of stimulating investigation in this important, yet poorly understood field of research.

摘要

ATP 的水解是真核细胞代谢能量的主要来源。在生理条件下,细胞通常会产生足够水平的 ATP 来为维持内稳态所需的主动生物过程提供燃料。然而,支持将 ATP 分配到具有高局部需求的亚细胞微环境中的机制仍知之甚少。在正常生理条件下,ATP 在细胞内的分布被认为依赖于通过 ATP 产生系统(如线粒体和糖酵解途径)产生的浓度梯度的被动扩散。然而,由于局部 ATP 消耗的增加,亚细胞微环境可能会出现 ATP 缺乏。或者,在缺氧期间的生物能量应激期间,ATP 的产生可能会减少。因此,哺乳动物细胞需要有能力改变其代谢和能量分布策略,以补偿局部 ATP 不足,同时控制 ATP 的产生。满足细胞的生物能量需求极有可能涉及到将产生 ATP 的系统有调节地分配到细胞内高 ATP 需求区域。最近,ATP 产生系统的分布(空间和时间上)已成为一个研究热点。在这里,我们回顾了关于细胞内能量产生和分布的已知(和未知)内容,并探讨了在缺氧条件下改变这种靶向分布的潜在机制,旨在激发这一重要但尚未得到充分研究的研究领域的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae9a/10480318/b0d01770b14a/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae9a/10480318/e504cd01c765/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae9a/10480318/bb56d3dc8084/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae9a/10480318/ab488b7d8639/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae9a/10480318/b0d01770b14a/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae9a/10480318/e504cd01c765/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae9a/10480318/bb56d3dc8084/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae9a/10480318/ab488b7d8639/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae9a/10480318/b0d01770b14a/gr4.jpg

相似文献

[1]
Intracellular energy production and distribution in hypoxia.

J Biol Chem. 2023-9

[2]
Bioenergetic profile of human coronary artery smooth muscle cells and effect of metabolic intervention.

PLoS One. 2017-5-19

[3]
Exploring the molecular interface between hypoxia-inducible factor signalling and mitochondria.

Cell Mol Life Sci. 2019-2-14

[4]
Alveolar type II cells maintain bioenergetic homeostasis in hypoxia through metabolic and molecular adaptation.

Am J Physiol Lung Cell Mol Physiol. 2014-3-28

[5]
Differential regulation of HIF-mediated pathways increases mitochondrial metabolism and ATP production in hypoxic osteoclasts.

J Pathol. 2013-4

[6]
Quantifying intracellular rates of glycolytic and oxidative ATP production and consumption using extracellular flux measurements.

J Biol Chem. 2017-4-28

[7]
Cell bioenergetics and ATP production of boar spermatozoa.

Theriogenology. 2023-10-15

[8]
Hypoxia. 2. Hypoxia regulates cellular metabolism.

Am J Physiol Cell Physiol. 2010-12-1

[9]
Regulation of glycolysis by the hypoxia-inducible factor (HIF): implications for cellular physiology.

J Physiol. 2021-1

[10]
Augmentation of glycolytic metabolism by meclizine is indispensable for protection of dorsal root ganglion neurons from hypoxia-induced mitochondrial compromise.

Free Radic Biol Med. 2016-10

引用本文的文献

[1]
Green tea's secret weapon: a review on the protective effects of epigallocatechin-3-gallate against ischemia/reperfusion damage.

Pharmacol Rep. 2025-9-5

[2]
Quantification of Oxygenation and Oxygen Consumption Rates in the Mouse Brain Based on Tissue Oxygen Level-Dependent (TOLD) MRI.

NMR Biomed. 2025-9

[3]
RHOA-dependent regulation of mitochondrial remodeling and cell motility in hypoxia-exposed gastric epithelial cells.

J Cell Sci. 2025-7-15

[4]
Analysis of Energy Metabolism and Lipid Spatial Distribution in Hypoxic-Ischemic Encephalopathy Revealed by MALDI-MSI.

Biomedicines. 2025-6-11

[5]
Interplay of hypoxia, immune dysregulation, and metabolic stress in pathophysiology of type 1 diabetes.

Front Immunol. 2025-6-4

[6]
RNF213 Acts as a Molecular Switch for Cav-1 Ubiquitination and Phosphorylation in Human Cells.

Cells. 2025-5-25

[7]
Considering the effect of Pi rebinding on myosin dynamics based on the distinct functions of cardiac and skeletal myosin.

Front Physiol. 2025-5-16

[8]
Pools of Independently Cycling Inositol Phosphates Revealed by Pulse Labeling with O-Water.

J Am Chem Soc. 2025-5-28

[9]
Oxidant-Based Cytotoxic Agents During Aging: From Disturbed Energy Metabolism to Chronic Inflammation and Disease Progression.

Biomolecules. 2025-4-9

[10]
New prognostic features and personalized treatment strategies of mitochondrial related genes in colorectal cancer patients.

Front Pharmacol. 2025-4-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索