Suppr超能文献

基于脉冲耦合神经网络的视觉感知模型仿真分析

Simulation analysis of visual perception model based on pulse coupled neural network.

作者信息

Li Mingdong

机构信息

School of Information Engineering, Suzhou University, Suzhou, 234000, China.

出版信息

Sci Rep. 2023 Jul 28;13(1):12281. doi: 10.1038/s41598-023-39376-z.

Abstract

Pulse-coupled neural networks perform well in many fields such as information retrieval, depth estimation and object detection. Based on pulse coupled neural network (PCNN) theory, this paper constructs a visual perception model framework and builds a real image reproduction platform. The model firstly analyzes the structure and generalization ability of neural network multi-class classifier, uses the minimax criterion of feature space as the splitting criterion of visual perception decision node, which solves the generalization problem of neural network learning algorithm. In the simulation process, the initial threshold is optimized by the two-dimensional maximum inter-class variance method, and in order to improve the real-time performance of the algorithm, the fast recurrence formula of neural network is derived and given. The PCNN image segmentation method based on genetic algorithm is analyzed. The genetic algorithm improves the loop termination condition and the adaptive setting of model parameters of PCNN image segmentation algorithm, but the PCNN image segmentation algorithm still has the problem of complexity. In order to solve this problem, this paper proposed an IGA-PCNN image segmentation method combining the improved algorithm and PCNN model. Firstly, it used the improved immune genetic algorithm to adaptively obtain the optimal threshold, and then replaced the dynamic threshold in PCNN model with the optimal threshold, and finally used the pulse coupling characteristics of PCNN model to complete the image segmentation. From the coupling characteristics of PCNN, junction close space of image and gray level characteristics, it determined the local gray mean square error of image connection strength coefficient. The feature extraction and object segmentation properties of PCNN come from the spike frequency of neurons, and the number of neurons in PCNN is equal to the number of pixels in the input image. In addition, the spatial and gray value differences of pixels should be considered comprehensively to determine their connection matrix. Digital experiments show that the multi-scale multi-task pulse coupled neural network model can shorten the total training time by 17 h, improve the comprehensive accuracy of the task test data set by 1.04%, and shorten the detection time of each image by 4.8 s compared with the series network model of multiple single tasks. Compared with the traditional PCNN algorithm, it has the advantages of fast visual perception and clear target contour segmentation, and effectively improves the anti-interference performance of the model.

摘要

脉冲耦合神经网络在信息检索、深度估计和目标检测等许多领域表现出色。基于脉冲耦合神经网络(PCNN)理论,本文构建了一个视觉感知模型框架,并搭建了一个真实图像再现平台。该模型首先分析了神经网络多类分类器的结构和泛化能力,将特征空间的极小极大准则作为视觉感知决策节点的分裂准则,解决了神经网络学习算法的泛化问题。在仿真过程中,采用二维最大类间方差法对初始阈值进行优化,并且为了提高算法的实时性能,推导并给出了神经网络的快速递推公式。分析了基于遗传算法的PCNN图像分割方法。遗传算法改进了PCNN图像分割算法的循环终止条件和模型参数的自适应设置,但PCNN图像分割算法仍存在复杂度问题。为了解决这个问题,本文提出了一种将改进算法与PCNN模型相结合的IGA - PCNN图像分割方法。首先,利用改进的免疫遗传算法自适应地获取最优阈值,然后用最优阈值替换PCNN模型中的动态阈值,最后利用PCNN模型的脉冲耦合特性完成图像分割。从PCNN的耦合特性、图像的邻接紧密空间和灰度级特性出发,确定了图像连接强度系数的局部灰度均方误差。PCNN的特征提取和目标分割特性源于神经元的脉冲频率,且PCNN中的神经元数量等于输入图像中的像素数量。此外,应综合考虑像素的空间和灰度值差异来确定其连接矩阵。数字实验表明,与多个单任务的串联网络模型相比,多尺度多任务脉冲耦合神经网络模型可将总训练时间缩短17小时,将任务测试数据集的综合准确率提高1.04%,并将每张图像的检测时间缩短4.8秒。与传统PCNN算法相比,它具有视觉感知快、目标轮廓分割清晰的优点,有效提高了模型的抗干扰性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abc8/10382568/68bf042553e7/41598_2023_39376_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验