Suppr超能文献

使用自适应快速3D脉冲耦合神经网络对3D CT图像中的椎骨进行自动分割。

Automatic segmentation of vertebrae in 3D CT images using adaptive fast 3D pulse coupled neural networks.

作者信息

Zareie Mina, Parsaei Hossein, Amiri Saba, Awan Malik Shahzad, Ghofrani Mohsen

机构信息

Department of Medical Physics and Engineering, Shiraz University of Medical Sciences, Shiraz, Iran.

Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.

出版信息

Australas Phys Eng Sci Med. 2018 Dec;41(4):1009-1020. doi: 10.1007/s13246-018-0702-3. Epub 2018 Oct 30.

Abstract

Two systems are presented for segmentation of vertebrae in a 3D computed tomography (CT) image. The first method extracts seven features from each voxel and uses a multi-layer perceptron neural network (MLPNN) to classify the voxel as vertebrae or background. In the second method, the segmentation is completed in two steps: first, a newly developed adaptive pulse coupled neural network (APCNN) directly applied to a given image segments vertebrae, then the result is refined using a median filter. In the developed APCNN, the values for the user-defined parameters of the pulse coupled neural networks (PCNN) are adaptively adjusted for each image individually, instead of using one value for all images as in conventional PCNN. The performance of both systems in terms of Dice index (DI) was evaluated and compared against the state-of-the-art segmentation methods using seventeen clinical and standard CT images. Overall, both systems demonstrated statistically similar and promising performance with average DI > 95%. Compared to existing PCNN-based segmentation algorithms, the accuracy of the proposed APCNN improved by 29.3% on average. The developed APCNN-based system is more accurate than MLPNN-based system and existing PCNN-based algorithms in segmentation of vertebrae with blurred and weak boundaries and in the images contaminated by salt- and- pepper noise. In terms of computation time, the APCNN-based system is 16 times faster than the MLPNN-based system. Consequently, the presented APCNN-based algorithm is both accurate and fast and could be used in clinical environment for segmentation of vertebrae in 3D CT images.

摘要

本文提出了两种用于在三维计算机断层扫描(CT)图像中分割椎骨的系统。第一种方法从每个体素中提取七个特征,并使用多层感知器神经网络(MLPNN)将体素分类为椎骨或背景。在第二种方法中,分割分两步完成:首先,将新开发的自适应脉冲耦合神经网络(APCNN)直接应用于给定图像来分割椎骨,然后使用中值滤波器对结果进行细化。在开发的APCNN中,脉冲耦合神经网络(PCNN)的用户定义参数值针对每个图像单独进行自适应调整,而不是像传统PCNN那样对所有图像使用一个值。使用十七幅临床和标准CT图像,评估了这两种系统在骰子系数(DI)方面的性能,并与最先进的分割方法进行了比较。总体而言,两种系统均表现出统计学上相似且有前景的性能,平均DI>95%。与现有的基于PCNN的分割算法相比,所提出的APCNN的准确率平均提高了29.3%。在分割边界模糊且微弱以及受椒盐噪声污染的图像中的椎骨时,所开发的基于APCNN的系统比基于MLPNN的系统和现有的基于PCNN的算法更准确。在计算时间方面,基于APCNN的系统比基于MLPNN的系统快16倍。因此,所提出的基于APCNN的算法既准确又快速,可用于临床环境中三维CT图像的椎骨分割。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验