Suppr超能文献

基于 EM 的自适应脉冲耦合神经网络在脑磁共振成像中的图像分割。

Image segmentation by EM-based adaptive pulse coupled neural networks in brain magnetic resonance imaging.

机构信息

Computer Aided Measurement and Diagnostic Systems Laboratory, Department of Industrial Engineering and Management, National Yunlin University of Science and Technology, Taiwan, ROC.

出版信息

Comput Med Imaging Graph. 2010 Jun;34(4):308-20. doi: 10.1016/j.compmedimag.2009.12.002. Epub 2009 Dec 29.

Abstract

We propose an automatic hybrid image segmentation model that integrates the statistical expectation maximization (EM) model and the spatial pulse coupled neural network (PCNN) for brain magnetic resonance imaging (MRI) segmentation. In addition, an adaptive mechanism is developed to fine tune the PCNN parameters. The EM model serves two functions: evaluation of the PCNN image segmentation and adaptive adjustment of the PCNN parameters for optimal segmentation. To evaluate the performance of the adaptive EM-PCNN, we use it to segment MR brain image into gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF). The performance of the adaptive EM-PCNN is compared with that of the non-adaptive EM-PCNN, EM, and Bias Corrected Fuzzy C-Means (BCFCM) algorithms. The result is four sets of boundaries for the GM and the brain parenchyma (GM+WM), the two regions of most interest in medical research and clinical applications. Each set of boundaries is compared with the golden standard to evaluate the segmentation performance. The adaptive EM-PCNN significantly outperforms the non-adaptive EM-PCNN, EM, and BCFCM algorithms in gray mater segmentation. In brain parenchyma segmentation, the adaptive EM-PCNN significantly outperforms the BCFCM only. However, the adaptive EM-PCNN is better than the non-adaptive EM-PCNN and EM on average. We conclude that of the three approaches, the adaptive EM-PCNN yields the best results for gray matter and brain parenchyma segmentation.

摘要

我们提出了一种自动混合图像分割模型,该模型将统计期望最大化(EM)模型和空间脉冲耦合神经网络(PCNN)集成在一起,用于磁共振成像(MRI)分割。此外,还开发了一种自适应机制来微调 PCNN 参数。EM 模型具有两个功能:评估 PCNN 图像分割和自适应调整 PCNN 参数以实现最佳分割。为了评估自适应 EM-PCNN 的性能,我们使用它将磁共振脑图像分割为灰质(GM)、白质(WM)和脑脊液(CSF)。将自适应 EM-PCNN 的性能与非自适应 EM-PCNN、EM 和偏差校正模糊 C 均值(BCFCM)算法进行比较。结果是 GM 和脑实质(GM+WM)的四组边界,这是医学研究和临床应用中最感兴趣的两个区域。每组边界都与黄金标准进行比较,以评估分割性能。在灰质分割方面,自适应 EM-PCNN 明显优于非自适应 EM-PCNN、EM 和 BCFCM 算法。在脑实质分割方面,自适应 EM-PCNN 仅显著优于 BCFCM。然而,自适应 EM-PCNN 在平均水平上优于非自适应 EM-PCNN 和 EM。我们得出结论,在这三种方法中,自适应 EM-PCNN 可实现最佳的灰质和脑实质分割效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验