Kwak Dongho, Combriat Thomas, Jensenius Alexander Refsum, Olsen Petter Angell
RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, Department of Musicology, University of Oslo, 0371 Oslo, Norway.
Hybrid Technology Hub, Centre for Organ on a Chip-Technology, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway.
Bioengineering (Basel). 2023 Jul 6;10(7):811. doi: 10.3390/bioengineering10070811.
This paper presents an innovative experimental setup that employs the principles of audio technology to subject adherent cells to rhythmic vertical vibrations. We employ a novel approach that combines three-axis acceleration measurements and particle tracking velocimetry to evaluate the setup's performance. This allows us to estimate crucial parameters such as root mean square acceleration, fluid flow patterns, and shear stress generated within the cell culture wells when subjected to various vibration types. The experimental conditions consisted of four vibrational modes: No Vibration, Continuous Vibration, Regular Pulse, and Variable Pulse. To evaluate the effects on cells, we utilized fluorescence microscopy and a customized feature extraction algorithm to analyze the F-actin filament structures. Our findings indicate a consistent trend across all vibrated cell cultures, revealing a reduction in size and altered orientation (2D angle) of the filaments. Furthermore, we observed cell accumulations in the G1 cell cycle phase in cells treated with Continuous Vibration and Regular Pulse. Our results demonstrate a negative correlation between the magnitude of mechanical stimuli and the size of F-actin filaments, as well as a positive correlation with the accumulations of cells in the G1 phase of the cell cycle. By unraveling these analyses, this study paves the way for future investigations and provides a compelling framework for comprehending the intricate cellular responses to rhythmic mechanical stimulation.
本文介绍了一种创新的实验装置,该装置运用音频技术原理使贴壁细胞受到有节奏的垂直振动。我们采用了一种新颖的方法,将三轴加速度测量和粒子跟踪测速技术相结合来评估该装置的性能。这使我们能够估计在细胞培养孔中受到各种振动类型作用时产生的关键参数,如均方根加速度、流体流动模式和剪应力。实验条件包括四种振动模式:无振动、连续振动、规则脉冲和可变脉冲。为了评估对细胞的影响,我们利用荧光显微镜和定制的特征提取算法来分析F-肌动蛋白丝结构。我们的研究结果表明,在所有振动的细胞培养物中都存在一致的趋势,即细丝尺寸减小且方向(二维角度)改变。此外,我们在接受连续振动和规则脉冲处理的细胞中观察到G1细胞周期阶段的细胞积累。我们的结果表明,机械刺激的强度与F-肌动蛋白丝的大小呈负相关,与细胞周期G1期的细胞积累呈正相关。通过深入这些分析,本研究为未来的研究铺平了道路,并为理解细胞对有节奏机械刺激的复杂反应提供了一个引人注目的框架。