文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

急性迷走神经刺激治疗耐药性癫痫患者海马体和杏仁核中兴奋/抑制失衡的改变

Alteration of Excitation/Inhibition Imbalance in the Hippocampus and Amygdala of Drug-Resistant Epilepsy Patients Treated with Acute Vagus Nerve Stimulation.

作者信息

Ooi Qian Yi, Qin Xiaoya, Yuan Yuan, Zhang Xiaobin, Yao Yi, Hao Hongwei, Li Luming

机构信息

National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China.

Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518071, China.

出版信息

Brain Sci. 2023 Jun 21;13(7):976. doi: 10.3390/brainsci13070976.


DOI:10.3390/brainsci13070976
PMID:37508908
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10377456/
Abstract

An imbalance between excitation (E) and inhibition (I) in the brain has been identified as a key pathophysiology of epilepsy over the years. The hippocampus and amygdala in the limbic system play a crucial role in the initiation and conduction of epileptic seizures and are often referred to as the transfer station and amplifier of seizure activities. Existing animal and imaging studies reveal that the hippocampus and amygdala, which are significant parts of the vagal afferent network, can be modulated in order to generate an antiepileptic effect. Using stereo-electroencephalography (SEEG) data, we examined the E/I imbalance in the hippocampus and amygdala of ten drug-resistant epilepsy children treated with acute vagus nerve stimulation (VNS) by estimating the 1/f power slope of hippocampal and amygdala signals in the range of 1-80 Hz. While the change in the 1/f power slope from VNS-BASE varied between different stimulation amplitudes and brain regions, it was more prominent in the hippocampal region. In the hippocampal region, we found a flatter 1/f power slope during VNS-ON in patients with good responsiveness to VNS under the optimal stimulation amplitude, indicating that the E/I imbalance in the region was improved. There was no obvious change in 1/f power slope for VNS poor responders. For VNS non-responders, the 1/f power slope slightly increased when the stimulation was applied. Overall, this study implies that the regulation of E/I imbalance in the epileptic brain, especially in the hippocampal region, may be an acute intracranial effect of VNS.

摘要

多年来,大脑中兴奋(E)与抑制(I)之间的失衡已被确认为癫痫的关键病理生理学特征。边缘系统中的海马体和杏仁核在癫痫发作的起始和传导中起着至关重要的作用,常被称为癫痫活动的中转站和放大器。现有的动物和影像学研究表明,作为迷走神经传入网络重要组成部分的海马体和杏仁核可通过调节来产生抗癫痫作用。我们利用立体脑电图(SEEG)数据,通过估计1 - 80Hz范围内海马体和杏仁核信号的1/f功率斜率,研究了10例接受急性迷走神经刺激(VNS)治疗的耐药性癫痫儿童海马体和杏仁核中的E/I失衡情况。虽然VNS - BASE的1/f功率斜率变化在不同刺激幅度和脑区之间有所不同,但在海马体区域更为显著。在海马体区域,我们发现,在最佳刺激幅度下对VNS反应良好的患者,VNS开启时1/f功率斜率更平缓,这表明该区域的E/I失衡得到改善。VNS反应较差的患者,其1/f功率斜率没有明显变化。对于VNS无反应者,施加刺激时1/f功率斜率略有增加。总体而言,本研究表明,调节癫痫大脑中的E/I失衡,尤其是海马体区域的失衡,可能是VNS的一种急性颅内效应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/322d/10377456/0efdd5fb4fc4/brainsci-13-00976-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/322d/10377456/1f7f96dfead2/brainsci-13-00976-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/322d/10377456/0c2051c8001e/brainsci-13-00976-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/322d/10377456/3ecd60501693/brainsci-13-00976-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/322d/10377456/0efdd5fb4fc4/brainsci-13-00976-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/322d/10377456/1f7f96dfead2/brainsci-13-00976-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/322d/10377456/0c2051c8001e/brainsci-13-00976-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/322d/10377456/3ecd60501693/brainsci-13-00976-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/322d/10377456/0efdd5fb4fc4/brainsci-13-00976-g004.jpg

相似文献

[1]
Alteration of Excitation/Inhibition Imbalance in the Hippocampus and Amygdala of Drug-Resistant Epilepsy Patients Treated with Acute Vagus Nerve Stimulation.

Brain Sci. 2023-6-21

[2]
Latest Views on the Mechanisms of Action of Surgically Implanted Cervical Vagal Nerve Stimulation in Epilepsy.

Neuromodulation. 2023-4

[3]
Acute seizure-suppressing effect of vagus nerve stimulation in the amygdala kindled rat.

Brain Res. 2010-1-14

[4]
The Effectiveness of Vagus Nerve Stimulation in Drug-Resistant Epilepsy Correlates with Vagus Nerve Stimulation-Induced Electroencephalography Desynchronization.

Brain Connect. 2020-12

[5]
Immediate Effects of Vagal Nerve Stimulation in Drug-Resistant Epilepsy Revealed by Magnetoencephalographic Recordings.

Brain Connect. 2023-2

[6]
Pre-ictal heart rate variability alterations in focal onset seizures and response to vagus nerve stimulation.

Seizure. 2021-3

[7]
Vagus nerve stimulation for partial seizures.

Cochrane Database Syst Rev. 2015-4-3

[8]
Severe autonomic nervous system imbalance in Lennox-Gastaut syndrome patients demonstrated by heart rate variability recordings.

Epilepsy Res. 2021-11

[9]
An economic evaluation of vagus nerve stimulation as an adjunctive treatment to anti-seizure medications for the treatment of drug resistant epilepsy in the United States.

J Med Econ. 2023

[10]
[The effects of vagus nerve stimulation on hippocampal neuro-inflammatory and α7nAChR expression in rats with intractable epilepsy].

Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2022-7

引用本文的文献

[1]
Effects of Chronic Photobiomodulation with Transcranial Near-Infrared Laser on Seizure Frequency and Brain Metabolomics of Rats with Pilocarpine-Induced Seizures.

Mol Neurobiol. 2025-7-14

[2]
Age predicts peak gamma frequency and N1 amplitude of visual evoked potential.

BMC Neurosci. 2025-1-24

[3]
The Relationship among SARS-CoV-2, Vaccine Spike Protein, Renin- Angiotensin System, and Epilepsy.

Infect Disord Drug Targets. 2025

[4]
Transcutaneous vagus nerve stimulation: a bibliometric study on current research hotspots and status.

Front Neurosci. 2024-8-16

[5]
Transcutaneous auricular vagus nerve stimulation modifies cortical excitability in middle-aged and older adults.

Psychophysiology. 2025-1

[6]
The microRNA-211-5p/P2RX7/ERK/GPX4 axis regulates epilepsy-associated neuronal ferroptosis and oxidative stress.

J Neuroinflammation. 2024-1-8

本文引用的文献

[1]
VNS parameters for clinical response in Epilepsy.

Brain Stimul. 2022

[2]
Interictal SEEG Resting-State Connectivity Localizes the Seizure Onset Zone and Predicts Seizure Outcome.

Adv Sci (Weinh). 2022-6

[3]
International League Against Epilepsy classification and definition of epilepsy syndromes with onset in childhood: Position paper by the ILAE Task Force on Nosology and Definitions.

Epilepsia. 2022-6

[4]
The Anti-Epileptic Effects of Carbenoxolone In Vitro and In Vivo.

Int J Mol Sci. 2022-1-8

[5]
Connectomics of human electrophysiology.

Neuroimage. 2022-2-15

[6]
Vagus Nerve Stimulation Elicits Sleep EEG Desynchronization and Network Changes in Responder Patients in Epilepsy.

Neurotherapeutics. 2021-10

[7]
Ferroptosis and Its Role in Epilepsy.

Front Cell Neurosci. 2021-7-15

[8]
Parameterizing neural power spectra into periodic and aperiodic components.

Nat Neurosci. 2020-12

[9]
The Effectiveness of Vagus Nerve Stimulation in Drug-Resistant Epilepsy Correlates with Vagus Nerve Stimulation-Induced Electroencephalography Desynchronization.

Brain Connect. 2020-12

[10]
Intracranial EEG in the 21st Century.

Epilepsy Curr. 2020-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索