ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal.
iMed.UL (Institute for Medicines and Pharmaceutical Sciences, Portugal), Faculty of Pharmacy, University of Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisbon, Portugal.
Biomolecules. 2023 Jul 6;13(7):1083. doi: 10.3390/biom13071083.
A unique cytochrome P450 (CYP) oxidoreductase (CPR) sustains activities of human microsomal CYPs. Its function requires toggling between a closed conformation enabling electron transfers from NADPH to FAD and then FMN cofactors and open conformations forming complexes and transferring electrons to CYPs. We previously demonstrated that distinct features of the hinge region linking the FAD and FMN domain (FD) modulate conformer poses and their interactions with CYPs. Specific FD residues contribute in a CYP isoform-dependent manner to the recognition and electron transfer mechanisms that are additionally modulated by the structure of CYP-bound substrate. To obtain insights into the underlying mechanisms, we analyzed how hinge region and FD mutations influence CYP1A2-mediated caffeine metabolism. Activities, metabolite profiles, regiospecificity and coupling efficiencies were evaluated in regard to the structural features and molecular dynamics of complexes bearing alternate substrate poses at the CYP active site. Studies reveal that FD variants not only modulate CYP activities but surprisingly the regiospecificity of reactions. Computational approaches evidenced that the considered mutations are generally in close contact with residues at the FD-CYP interface, exhibiting induced fits during complexation and modified dynamics depending on caffeine presence and orientation. It was concluded that dynamic coupling between FD mutations, the complex interface and CYP active site exist consistently with the observed regiospecific alterations.
一种独特的细胞色素 P450(CYP)氧化还原酶(CPR)维持着人类微粒体 CYP 的活性。它的功能需要在能够将电子从 NADPH 转移到 FAD 和 FMN 辅因子的封闭构象和形成复合物并将电子转移到 CYP 的开放构象之间来回切换。我们之前的研究表明,连接 FAD 和 FMN 结构域(FD)的铰链区域的独特特征调节构象构象及其与 CYP 的相互作用。特定的 FD 残基以 CYP 同工型依赖性的方式有助于识别和电子转移机制,这些机制还受到 CYP 结合底物的结构调节。为了深入了解潜在的机制,我们分析了铰链区域和 FD 突变如何影响 CYP1A2 介导的咖啡因代谢。在考虑到 CYP 活性位点上具有替代底物构象的复合物的结构特征和分子动力学的情况下,评估了活性、代谢产物谱、区域特异性和偶联效率。研究表明,FD 变体不仅调节 CYP 活性,而且令人惊讶的是还调节反应的区域特异性。计算方法表明,所考虑的突变通常与 FD-CYP 界面上的残基密切接触,在复合物形成过程中表现出诱导契合,并且根据咖啡因的存在和取向改变动力学。结论是,FD 突变、复合物界面和 CYP 活性位点之间的动态耦合与观察到的区域特异性变化一致。