Suppr超能文献

验证用于预测葡萄膜黑色素瘤患者预后的紫外线反应基因特征。

Validation of an Ultraviolet Light Response Gene Signature for Predicting Prognosis in Patients with Uveal Melanoma.

机构信息

Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia.

Professional Program in Surgical Instrumentation, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia.

出版信息

Biomolecules. 2023 Jul 19;13(7):1148. doi: 10.3390/biom13071148.

Abstract

Uveal melanoma (UVM) is a highly aggressive ocular cancer with limited therapeutic options and poor prognosis particularly for patients with liver metastasis. As such, the identification of new prognostic biomarkers is critical for developing effective treatment strategies. In this study, we aimed to investigate the potential of an ultraviolet light response gene signature to predict the prognosis of UVM patients. Our approach involved the development of a prognostic model based on genes associated with the cellular response to UV light. By employing this model, we generated risk scores to stratify patients into high- and low-risk groups. Furthermore, we conducted differential expression analysis between these two groups and explored the estimation of immune infiltration. To validate our findings, we applied our methodology to an independent UVM cohort. Through our study, we introduced a novel survival prediction tool and shed light on the underlying cellular processes within UVM tumors, emphasizing the involvement of immune subsets in tumor progression.

摘要

葡萄膜黑色素瘤(UVM)是一种高度侵袭性的眼部癌症,治疗选择有限,预后较差,特别是对于有肝转移的患者。因此,鉴定新的预后生物标志物对于制定有效的治疗策略至关重要。在这项研究中,我们旨在研究紫外线反应基因特征在预测 UVM 患者预后中的潜力。我们的方法涉及基于与细胞对紫外线反应相关的基因开发预后模型。通过使用该模型,我们生成风险评分,将患者分为高风险和低风险组。此外,我们还对这两组之间的差异表达进行了分析,并探讨了免疫浸润的评估。为了验证我们的发现,我们将我们的方法应用于一个独立的 UVM 队列。通过我们的研究,我们引入了一种新的生存预测工具,并阐明了 UVM 肿瘤内部的细胞过程,强调了免疫亚群在肿瘤进展中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72f1/10377706/26d869e41ebd/biomolecules-13-01148-g001a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验