文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

综合多组学分析揭示高级别浆液性卵巢癌中与不良预后相关的免疫抑制表型。

Integrated Multi-Omic Analysis Reveals Immunosuppressive Phenotype Associated with Poor Outcomes in High-Grade Serous Ovarian Cancer.

作者信息

Keathley Russell, Kocherginsky Masha, Davuluri Ramana, Matei Daniela

机构信息

Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.

Driskill Graduate Program in Life Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.

出版信息

Cancers (Basel). 2023 Jul 17;15(14):3649. doi: 10.3390/cancers15143649.


DOI:10.3390/cancers15143649
PMID:37509311
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10377286/
Abstract

High-grade serous ovarian cancer (HGSOC) is characterized by a complex genomic landscape, with both genetic and epigenetic diversity contributing to its pathogenesis, disease course, and response to treatment. To better understand the association between genomic features and response to treatment among 370 patients with newly diagnosed HGSOC, we utilized multi-omic data and semi-biased clustering of HGSOC specimens profiled by TCGA. A Cox regression model was deployed to select model input features based on the influence on disease recurrence. Among the features most significantly correlated with recurrence were the promotor-associated probes for the NFRKB and DPT genes and the TREML1 gene. Using 1467 transcriptomic and methylomic features as input to consensus clustering, we identified four distinct tumor clusters-three of which had noteworthy differences in treatment response and time to disease recurrence. Each cluster had unique divergence in differential analyses and distinctly enriched pathways therein. Differences in predicted stromal and immune cell-type composition were also observed, with an immune-suppressive phenotype specific to one cluster, which associated with short time to disease recurrence. Our model features were additionally used as a neural network input layer to validate the previously defined clusters with high prediction accuracy (91.3%). Overall, our approach highlights an integrated data utilization workflow from tumor-derived samples, which can be used to uncover novel drivers of clinical outcomes.

摘要

高级别浆液性卵巢癌(HGSOC)的特征是具有复杂的基因组格局,遗传和表观遗传多样性均对其发病机制、病程及治疗反应产生影响。为了更好地理解370例新诊断的HGSOC患者的基因组特征与治疗反应之间的关联,我们利用了多组学数据以及由TCGA分析的HGSOC样本的半偏聚类。采用Cox回归模型,根据对疾病复发的影响来选择模型输入特征。与复发最显著相关的特征包括NFRKB和DPT基因的启动子相关探针以及TREML1基因。以1467个转录组和甲基组特征作为一致性聚类的输入,我们识别出四个不同的肿瘤簇,其中三个在治疗反应和疾病复发时间上有显著差异。每个簇在差异分析中都有独特的差异,且其中的通路明显富集。还观察到预测的基质和免疫细胞类型组成存在差异,其中一个簇具有免疫抑制表型,这与疾病复发时间短有关。我们的模型特征还被用作神经网络输入层,以高预测准确率(91.3%)验证先前定义的簇。总体而言,我们的方法突出了一种从肿瘤衍生样本中整合数据利用的工作流程,可用于揭示临床结果的新驱动因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0279/10377286/ee49761d17c2/cancers-15-03649-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0279/10377286/b9ab9ab135f6/cancers-15-03649-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0279/10377286/d9bf97ecf593/cancers-15-03649-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0279/10377286/faffc9044ab2/cancers-15-03649-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0279/10377286/374fc21152a4/cancers-15-03649-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0279/10377286/f94f3fba5919/cancers-15-03649-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0279/10377286/bd6645d4b0c4/cancers-15-03649-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0279/10377286/f8a4bc75a82d/cancers-15-03649-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0279/10377286/a59a5e481292/cancers-15-03649-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0279/10377286/ee49761d17c2/cancers-15-03649-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0279/10377286/b9ab9ab135f6/cancers-15-03649-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0279/10377286/d9bf97ecf593/cancers-15-03649-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0279/10377286/faffc9044ab2/cancers-15-03649-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0279/10377286/374fc21152a4/cancers-15-03649-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0279/10377286/f94f3fba5919/cancers-15-03649-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0279/10377286/bd6645d4b0c4/cancers-15-03649-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0279/10377286/f8a4bc75a82d/cancers-15-03649-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0279/10377286/a59a5e481292/cancers-15-03649-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0279/10377286/ee49761d17c2/cancers-15-03649-g009.jpg

相似文献

[1]
Integrated Multi-Omic Analysis Reveals Immunosuppressive Phenotype Associated with Poor Outcomes in High-Grade Serous Ovarian Cancer.

Cancers (Basel). 2023-7-17

[2]
Machine learning-based integration develops an immune-related risk model for predicting prognosis of high-grade serous ovarian cancer and providing therapeutic strategies.

Front Immunol. 2023

[3]
A cell-of-origin epigenetic tracer reveals clinically distinct subtypes of high-grade serous ovarian cancer.

Genome Med. 2020-10-30

[4]
Tertiary Lymphoid Structures Are Associated with a Favorable Prognosis in High-Grade Serous Ovarian Cancer Patients.

Reprod Sci. 2023-8

[5]
Multi-omics-based analysis of high grade serous ovarian cancer subtypes reveals distinct molecular processes linked to patient prognosis.

FEBS Open Bio. 2023-4

[6]
[Identification of key molecules in miRNA-mRNA regulatory network associated with high-grade serous ovarian cancer recurrence using bioinformatic analysis].

Nan Fang Yi Ke Da Xue Xue Bao. 2023-1-20

[7]
Single-Cell RNA Sequencing Reveals the Tissue Architecture in Human High-Grade Serous Ovarian Cancer.

Clin Cancer Res. 2022-8-15

[8]
Methylome analysis of extreme chemoresponsive patients identifies novel markers of platinum sensitivity in high-grade serous ovarian cancer.

BMC Med. 2017-6-23

[9]
Integrated analysis of spatial transcriptomics and CT phenotypes for unveiling the novel molecular characteristics of recurrent and non-recurrent high-grade serous ovarian cancer.

Biomark Res. 2024-8-12

[10]
Identification of a novel gene signature predicting response to first-line chemotherapy in BRCA wild-type high-grade serous ovarian cancer patients.

J Exp Clin Cancer Res. 2022-2-4

引用本文的文献

[1]
Subtype-specific analysis of gene co-expression networks and immune cell profiling reveals high grade serous ovarian cancer subtype linkage to variable immune microenvironment.

J Ovarian Res. 2024-12-3

[2]
Comparative transcriptomic, epigenomic and immunological analyses identify drivers of disparity in high-grade serous ovarian cancer.

NPJ Genom Med. 2024-12-2

[3]
A disulfidptosis-related glucose metabolism and immune response prognostic model revealing the immune microenvironment in lung adenocarcinoma.

Front Immunol. 2024

[4]
Advancements and applications of single-cell multi-omics techniques in cancer research: Unveiling heterogeneity and paving the way for precision therapeutics.

Biochem Biophys Rep. 2023-11-29

本文引用的文献

[1]
Molecular characteristics and clinical behaviour of epithelial ovarian cancers.

Cancer Lett. 2023-2-28

[2]
Contemporary primary treatment of women with stage II-IV low-grade serous ovarian/peritoneal cancer (LGSOC): Determinants of relapse and disease-free survival.

Gynecol Oncol. 2022-11

[3]
The genomic landscape of low-grade serous ovarian/peritoneal carcinoma and its impact on clinical outcomes.

Gynecol Oncol. 2022-6

[4]
Cervical cancer progression is regulated by SOX transcription factors: Revealing signaling networks and therapeutic strategies.

Biomed Pharmacother. 2021-12

[5]
clusterProfiler 4.0: A universal enrichment tool for interpreting omics data.

Innovation (Camb). 2021-7-1

[6]
Distinct transcriptional programs stratify ovarian cancer cell lines into the five major histological subtypes.

Genome Med. 2021-9-1

[7]
MODEL-BASED FEATURE SELECTION AND CLUSTERING OF RNA-SEQ DATA FOR UNSUPERVISED SUBTYPE DISCOVERY.

Ann Appl Stat. 2021-3

[8]
Targeting CXCR2 inhibits the progression of lung cancer and promotes therapeutic effect of cisplatin.

Mol Cancer. 2021-4-4

[9]
Patient-derived organoids and high grade serous ovarian cancer: from disease modeling to personalized medicine.

J Exp Clin Cancer Res. 2021-3-31

[10]
Survival analysis-part 2: Cox proportional hazards model.

Indian J Thorac Cardiovasc Surg. 2021-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索