Suppr超能文献

热图解释在基于深度学习的心电图分析中的效用

Usefulness of Heat Map Explanations for Deep-Learning-Based Electrocardiogram Analysis.

作者信息

Storås Andrea M, Andersen Ole Emil, Lockhart Sam, Thielemann Roman, Gnesin Filip, Thambawita Vajira, Hicks Steven A, Kanters Jørgen K, Strümke Inga, Halvorsen Pål, Riegler Michael A

机构信息

Department of Holistic Systems, Simula Metropolitan Center for Digital Engineering, 0167 Oslo, Norway.

Department of Computer Science, Oslo Metropolitan University, 0130 Oslo, Norway.

出版信息

Diagnostics (Basel). 2023 Jul 11;13(14):2345. doi: 10.3390/diagnostics13142345.

Abstract

Deep neural networks are complex machine learning models that have shown promising results in analyzing high-dimensional data such as those collected from medical examinations. Such models have the potential to provide fast and accurate medical diagnoses. However, the high complexity makes deep neural networks and their predictions difficult to understand. Providing model explanations can be a way of increasing the understanding of "black box" models and building trust. In this work, we applied transfer learning to develop a deep neural network to predict sex from electrocardiograms. Using the visual explanation method Grad-CAM, heat maps were generated from the model in order to understand how it makes predictions. To evaluate the usefulness of the heat maps and determine if the heat maps identified electrocardiogram features that could be recognized to discriminate sex, medical doctors provided feedback. Based on the feedback, we concluded that, in our setting, this mode of explainable artificial intelligence does not provide meaningful information to medical doctors and is not useful in the clinic. Our results indicate that improved explanation techniques that are tailored to medical data should be developed before deep neural networks can be applied in the clinic for diagnostic purposes.

摘要

深度神经网络是复杂的机器学习模型,在分析高维数据(如从医学检查中收集的数据)方面已显示出有前景的结果。这类模型有潜力提供快速且准确的医学诊断。然而,高度的复杂性使得深度神经网络及其预测难以理解。提供模型解释可能是增进对“黑箱”模型的理解并建立信任的一种方式。在这项工作中,我们应用迁移学习来开发一个深度神经网络,以便从心电图预测性别。使用视觉解释方法Grad-CAM,从模型生成热图,以了解它是如何进行预测的。为了评估热图的有用性,并确定热图是否识别出了可用于区分性别的心电图特征,医生提供了反馈。基于反馈,我们得出结论,在我们的研究环境中,这种可解释人工智能模式并未向医生提供有意义的信息,在临床上也没有用处。我们的结果表明,在深度神经网络能够应用于临床诊断目的之前,应开发针对医学数据的改进解释技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77ff/10378376/ffa021aafb63/diagnostics-13-02345-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验