Suppr超能文献

人工智能辅助处理眼前节光学相干断层扫描(OCT)图像在玻璃体视网膜淋巴瘤诊断中的应用

Artificial Intelligence-Assisted Processing of Anterior Segment OCT Images in the Diagnosis of Vitreoretinal Lymphoma.

作者信息

Gozzi Fabrizio, Bertolini Marco, Gentile Pietro, Verzellesi Laura, Trojani Valeria, De Simone Luca, Bolletta Elena, Mastrofilippo Valentina, Farnetti Enrico, Nicoli Davide, Croci Stefania, Belloni Lucia, Zerbini Alessandro, Adani Chantal, De Maria Michele, Kosmarikou Areti, Vecchi Marco, Invernizzi Alessandro, Ilariucci Fiorella, Zanelli Magda, Iori Mauro, Cimino Luca

机构信息

Ocular Immunology Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, Italy.

Medical Physics Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, Italy.

出版信息

Diagnostics (Basel). 2023 Jul 23;13(14):2451. doi: 10.3390/diagnostics13142451.

Abstract

Anterior segment optical coherence tomography (AS-OCT) allows the explore not only the anterior chamber but also the front part of the vitreous cavity. Our cross-sectional single-centre study investigated whether AS-OCT can distinguish between vitreous involvement due to vitreoretinal lymphoma (VRL) and vitritis in uveitis. We studied AS-OCT images from 28 patients (11 with biopsy-proven VRL and 17 with differential diagnosis uveitis) using publicly available radiomics software written in MATLAB. Patients were divided into two balanced groups: training and testing. Overall, 3260/3705 (88%) AS-OCT images met our defined quality criteria, making them eligible for analysis. We studied five different sets of grey-level samplings (16, 32, 64, 128, and 256 levels), finding that 128 grey levels performed the best. We selected the five most effective radiomic features ranked by the ability to predict the class (VRL or uveitis). We built a classification model using the xgboost python function; through our model, 87% of eyes were correctly diagnosed as VRL or uveitis, regardless of exam technique or lens status. Areas under the receiver operating characteristic curves (AUC) in the 128 grey-level model were 0.95 [CI 0.94, 0.96] and 0.84 for training and testing datasets, respectively. This preliminary retrospective study highlights how AS-OCT can support ophthalmologists when there is clinical suspicion of VRL.

摘要

眼前节光学相干断层扫描(AS-OCT)不仅可以探查前房,还能够探查玻璃体腔的前部。我们的横断面单中心研究调查了AS-OCT能否区分葡萄膜炎性玻璃体炎和玻璃体视网膜淋巴瘤(VRL)所致的玻璃体受累情况。我们使用用MATLAB编写的公开可用的放射组学软件,研究了28例患者(11例经活检证实为VRL,17例为鉴别诊断为葡萄膜炎)的AS-OCT图像。患者被分为两个均衡的组:训练组和测试组。总体而言,3260/3705(88%)的AS-OCT图像符合我们定义的质量标准,使其有资格进行分析。我们研究了五组不同的灰度采样(16、32、64、128和256级),发现128级灰度表现最佳。我们选择了按预测类别(VRL或葡萄膜炎)能力排名的五个最有效的放射组学特征。我们使用xgboost python函数建立了一个分类模型;通过我们的模型,87%的眼睛被正确诊断为VRL或葡萄膜炎,无论检查技术或晶状体状态如何。128级灰度模型中,训练数据集和测试数据集的受试者操作特征曲线(AUC)下面积分别为0.95 [CI 0.94, 0.96]和0.84。这项初步的回顾性研究突出了在临床怀疑VRL时,AS-OCT如何能够为眼科医生提供帮助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a995/10378347/b820122aded2/diagnostics-13-02451-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验