Suppr超能文献

通过前节段光学相干断层扫描和基于人工智能的图像分析评估前葡萄膜炎。

Assessment of Anterior Uveitis Through Anterior-Segment Optical Coherence Tomography and Artificial Intelligence-Based Image Analyses.

机构信息

Department of Ophthalmology, Rigshospitalet, Glostrup, University of Copenhagen, Copenhagen, Denmark.

Department of Clinical Medicine. University of Copenhagen, Copenhagen, Denmark.

出版信息

Transl Vis Sci Technol. 2022 Apr 1;11(4):7. doi: 10.1167/tvst.11.4.7.

Abstract

PURPOSE

The purpose of this study was to develop an automated artificial intelligence (AI) based method to quantify inflammation in the anterior chamber (AC) using anterior-segment optical coherence tomography (AS-OCT) and to explore the correlation between AI assisted AS-OCT based inflammation analyses and clinical grading of anterior uveitis by Standardization of Uveitis Nomenclature (SUN).

METHODS

A prospective double blinded study of AS-OCT images of 32 eyes of 19 patients acquired by Tomey CASIA-II. OCT images were analyzed with proprietary AI-based software. Anatomic boundaries of the AC were segmented automatically by the AI software and Spearman's rank correlation between parameters related to AC cellular inflammation were calculated.

RESULTS

No significant (p = 0.6602) differences were found between the analyzed AC areas between samples of the different SUN grading, suggesting accurate and unbiased border detection/AC segmentation. Segmented AC areas were processed by the AI software and particles within the borders of AC were automatically counted by the software. Statistical analysis found significant (p < 0.001) correlation between clinical SUN grading and AI software detected particle count (Spearman ρ = 0.7077) and particle density (Spearman ρ = 0.7035). Significant (p < 0.001) correlation (Pearson's r = 0.9948) between manually and AI detected particles was found. No significant (p = 0.8080) difference was found between the sizes of the AI detected particles for all studies.

CONCLUSIONS

AI-based image analysis of AS-OCT slides show significant and independent correlation with clinical SUN assessment.

TRANSLATIONAL RELEVANCE

Automated AI-based AS-OCT image analysis suggests a noninvasive and quantitative assessment of AC inflammation with clear potential application in early detection and management of anterior uveitis.

摘要

目的

本研究旨在开发一种基于人工智能(AI)的自动方法,利用眼前节光学相干断层扫描(AS-OCT)定量评估前房(AC)炎症,并探讨基于 AI 辅助 AS-OCT 的炎症分析与使用标准葡萄膜炎命名法(SUN)进行的前葡萄膜炎临床分级之间的相关性。

方法

前瞻性、双盲研究,使用 Tomey CASIA-II 采集 19 名患者 32 只眼的 AS-OCT 图像。使用专有的基于 AI 的软件对 OCT 图像进行分析。AI 软件自动对 AC 的解剖边界进行分割,并计算与 AC 细胞炎症相关参数之间的 Spearman 秩相关系数。

结果

在不同 SUN 分级的样本中,分析的 AC 区域之间没有发现统计学上显著的差异(p = 0.6602),这表明边界检测/AC 分割准确且无偏倚。处理分割后的 AC 区域,AI 软件自动计算边界内的颗粒数。统计分析发现,临床 SUN 分级与 AI 软件检测到的颗粒计数(Spearman ρ = 0.7077)和颗粒密度(Spearman ρ = 0.7035)之间存在显著相关性(p < 0.001)。手动和 AI 检测到的颗粒之间存在显著相关性(p < 0.001,Pearson r = 0.9948)。在所有研究中,AI 检测到的颗粒大小之间没有发现统计学上显著的差异(p = 0.8080)。

结论

基于 AI 的 AS-OCT 幻灯片图像分析与临床 SUN 评估具有显著且独立的相关性。

翻译

李巍

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ba8/8994203/66aeb20a3b12/tvst-11-4-7-f002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验