Genethon, 91100 Evry, France.
Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France.
Int J Mol Sci. 2023 Jul 13;24(14):11421. doi: 10.3390/ijms241411421.
Duchenne muscular dystrophy (DMD) is a yet incurable rare genetic disease that affects the skeletal and cardiac muscles, leading to progressive muscle wasting and premature death. DMD is caused by the lack of dystrophin, a muscle protein essential for the biochemical support and integrity of muscle fibers. Gene replacement strategies for Duchenne muscular dystrophy (DMD) employing the adeno-associated virus (AAV) face the challenge imposed by the limited packaging capacity of AAV, only allowing the accommodation of a short version of dystrophin (µDys) that is still far removed from correcting human disease. The need to develop strategies leading to the expression of a best performing dystrophin variant led to only few studies reporting on the use of dual vectors, but none reported on a method to assess in vivo transgene reconstitution efficiency, the degree of which directly affects the use of safe AAV dosing. We report here on the generation of a dual AAV vector approach for the expression of a larger dystrophin version (quasidystrophin) based on homologous recombination, and the development of a methodology employing a strategic droplet digital PCR design, to determine the recombination efficiency as well as the occurrence of unwanted concatemerization events or aberrant expression from the single vectors. We demonstrated that, upon systemic delivery in the dystrophic D2.B10-Dmd/J (DBA2mdx) mice, our dual AAV approach led to high transgene reconstitution efficiency and negligible Inverted Terminal Repeats (ITR)-dependent concatemerization, with consequent remarkable protein restoration in muscles and improvement of muscle pathology. This evidence supports the suitability of our system for gene therapy application and the potential of this methodology to assess and improve the feasibility for therapeutic translation of multiple vector approaches.
杜氏肌营养不良症(DMD)是一种尚未能治愈的罕见遗传性疾病,影响骨骼肌和心肌,导致进行性肌肉消瘦和过早死亡。DMD 是由于缺乏肌营养不良蛋白,这是一种对肌肉纤维的生化支持和完整性至关重要的肌肉蛋白。使用腺相关病毒(AAV)的杜氏肌营养不良症(DMD)基因替代策略面临着 AAV 有限包装能力所带来的挑战,只能容纳肌营养不良蛋白的短版本(µDys),这仍然远不能纠正人类疾病。为了开发导致表达最佳性能的肌营养不良蛋白变体的策略,只有少数研究报告了使用双载体,但没有报告评估体内转基因重建效率的方法,其程度直接影响安全 AAV 剂量的使用。我们在这里报告了一种基于同源重组的双 AAV 载体方法,用于表达更大的肌营养不良蛋白版本(拟肌营养不良蛋白),并开发了一种采用策略性液滴数字 PCR 设计的方法,以确定重组效率以及单载体中不必要的串联事件或异常表达的发生。我们证明,在 D2.B10-Dmd/J(DBA2mdx)肌营养不良症小鼠中进行系统递药后,我们的双 AAV 方法导致了高转基因重建效率和可忽略不计的反向末端重复(ITR)依赖性串联,从而导致肌肉中显著的蛋白质恢复和肌肉病理学的改善。这一证据支持我们的系统用于基因治疗应用的适用性,以及该方法评估和提高多种载体方法治疗转化可行性的潜力。