Suppr超能文献

使用基于机器学习的回归方法预测食品和培养基中的特定微生物种群。

Prediction of spp. Population in Food Products and Culture Media Using Machine Learning-Based Regression Methods.

作者信息

Tarlak Fatih, Yücel Özgün

机构信息

Department of Nutrition and Dietetics, Istanbul Gedik University, Kartal, Istanbul 34876, Turkey.

Department of Chemical Engineering, Gebze Technical University, Gebze, Kocaeli 41400, Turkey.

出版信息

Life (Basel). 2023 Jun 22;13(7):1430. doi: 10.3390/life13071430.

Abstract

Machine learning approaches are alternative modelling techniques to traditional modelling equations used in predictive food microbiology and utilise algorithms to analyse large datasets that contain information about microbial growth or survival in various food matrices. These approaches leverage the power of algorithms to extract insights from the data and make predictions regarding the behaviour of microorganisms in different food environments. The objective of this study was to apply various machine learning-based regression methods, including support vector regression (SVR), Gaussian process regression (GPR), decision tree regression (DTR), and random forest regression (RFR), to estimate bacterial populations. In order to achieve this, a total of 5618 data points for spp. present in food products (beef, pork, and poultry) and culture media were gathered from the ComBase database. The machine learning algorithms were applied to predict the growth or survival behaviour of spp. in food products and culture media by considering predictor variables such as temperature, salt concentration, water activity, and acidity. The suitability of the algorithms was assessed using statistical measures such as coefficient of determination (R), root mean square error (RMSE), bias factor (Bf), and accuracy (A). Each of the regression algorithms showed appropriate estimation capabilities with R ranging from 0.886 to 0.913, RMSE from 0.724 to 0.899, B from 1.012 to 1.020, and A from 1.086 to 1.101 for each food product and culture medium. Since the predictive capability of RFR was the best among the algorithms, externally collected data from the literature were used for RFR. The external validation process showed statistical indices of B ranging from 0.951 to 1.040 and A ranging from 1.091 to 1.130, indicating that RFR can be used for predicting the survival and growth of microorganisms in food products. Therefore, machine learning approaches can be considered as an alternative to conventional modelling methods in predictive microbiology. However, it is important to highlight that the prediction power of the machine learning regression method directly depends on the dataset size, and it requires a large dataset to be employed for modelling. Therefore, the modelling work of this study can only be used for the prediction of spp. in specific food products (beef, pork, and poultry) and culture medium with certain conditions where a large dataset is available.

摘要

机器学习方法是预测食品微生物学中使用的传统建模方程的替代建模技术,它利用算法来分析包含各种食品基质中微生物生长或存活信息的大型数据集。这些方法利用算法的力量从数据中提取见解,并对不同食品环境中微生物的行为进行预测。本研究的目的是应用各种基于机器学习的回归方法,包括支持向量回归(SVR)、高斯过程回归(GPR)、决策树回归(DTR)和随机森林回归(RFR),来估计细菌数量。为了实现这一目标,从ComBase数据库收集了食品(牛肉、猪肉和家禽)和培养基中存在的 spp. 的总共5618个数据点。通过考虑温度、盐浓度、水分活度和酸度等预测变量,将机器学习算法应用于预测食品和培养基中 spp. 的生长或存活行为。使用决定系数(R)、均方根误差(RMSE)、偏差因子(Bf)和准确度(A)等统计量来评估算法的适用性。对于每种食品和培养基,每种回归算法都显示出适当的估计能力,R范围为0.886至0.913,RMSE范围为0.724至0.899,B范围为1.012至1.020,A范围为1.086至1.101。由于RFR在算法中的预测能力最佳,因此将从文献中外部收集的数据用于RFR。外部验证过程显示B的统计指标范围为0.951至1.040,A的范围为1.091至1.130,表明RFR可用于预测食品中微生物的存活和生长。因此,机器学习方法可被视为预测微生物学中传统建模方法的替代方法。然而,需要强调的是,机器学习回归方法的预测能力直接取决于数据集的大小,并且需要使用大型数据集进行建模。因此,本研究的建模工作仅可用于在有大型数据集的特定条件下预测特定食品(牛肉、猪肉和家禽)和培养基中的 spp.。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b76/10381478/68391c904383/life-13-01430-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验