Suppr超能文献

使用机器学习模型预测水质参数:以伊朗卡伦河为例。

Prediction of water quality parameters using machine learning models: a case study of the Karun River, Iran.

机构信息

Department of Irrigation and Drainage, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

出版信息

Environ Sci Pollut Res Int. 2021 Oct;28(40):57060-57072. doi: 10.1007/s11356-021-14560-8. Epub 2021 Jun 3.

Abstract

Accurate water quality predicting has an essential role in improving water management and pollution control. The machine learning models have been successfully implemented for modelling total dissolved solids (TDS), sodium absorption ratio (SAR) and total hardness (TH) content in aquatic ecosystems with insufficient data. However, due to multiple pollution sources and complex behaviours of pollutants, these models' effect in predicting TDS, SAR, and TH levels in the Karun River system is still unclear. Given this problem, multiple linear regression (MLR), M5P model tree, support vector regression (SVR) and random forest regression (RFR) models were used to predict TDS, SAR and TH variables in the four stations in the Karun River for 1999-2019 period. Initially, to reduce the number of input variables, the principal component analysis (PCA) technique was used. The developed models are valued in terms of the coefficient of determination (R) and the root mean square error (RMSE). Base on the PCA, it was found that sodium (Na), chloride (Cl) and TH and Na and Cl are the most influential inputs on TDS and SAR, respectively, while calcium (Ca) and magnesium (Mg) are the most effective on TH. The results indicated that RFR, SVR and MLR models had the lowest error in predicting TDS, SAR and TH, respectively, in all stations. RFR model had the highest performance for predicting TDS (R= 0.98, RMSE= 70.50 mg l), SVR model for predicting SAR (R= 0.99, RMSE= 0.04) and MLR model for predicting TH (R= 0.99, RMSE= 1.54 mg l) in Darkhovin station. The comparison of the results indicated that the machine learning models could satisfactorily estimate the TDS, SAR and TH for all stations.

摘要

准确的水质预测对于改善水资源管理和污染控制具有重要作用。机器学习模型已成功应用于建模水生态系统中的总溶解固体(TDS)、钠吸收比(SAR)和总硬度(TH)含量,尽管数据不足。然而,由于多种污染源和污染物的复杂行为,这些模型在预测卡里河系统中的 TDS、SAR 和 TH 水平方面的效果仍不清楚。鉴于此问题,本研究使用多元线性回归(MLR)、M5P 模型树、支持向量回归(SVR)和随机森林回归(RFR)模型来预测卡里河四个站点在 1999-2019 年期间的 TDS、SAR 和 TH 变量。首先,为了减少输入变量的数量,使用了主成分分析(PCA)技术。通过确定系数(R)和均方根误差(RMSE)来评估所开发的模型。基于 PCA,发现钠(Na)、氯(Cl)和 TH 以及 Na 和 Cl 分别对 TDS 和 SAR 影响最大,而钙(Ca)和镁(Mg)对 TH 的影响最大。结果表明,在所有站点中,RFR、SVR 和 MLR 模型在预测 TDS、SAR 和 TH 方面的误差最小。RFR 模型在预测 TDS(R=0.98,RMSE=70.50mg/L)方面表现最佳,SVR 模型在预测 SAR(R=0.99,RMSE=0.04)方面表现最佳,MLR 模型在预测 TH(R=0.99,RMSE=1.54mg/L)方面表现最佳。结果比较表明,机器学习模型可以很好地估计所有站点的 TDS、SAR 和 TH。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验