Kakani Vijay, Li Xingyou, Cui Xuenan, Kim Heetak, Kim Byung-Soo, Kim Hakil
Integrated System Engineering, Inha University, 100 Inharo, Nam-gu, Incheon 22212, Republic of Korea.
Electrical and Computer Engineering, Inha University, 100 Inharo, Nam-gu, Incheon 22212, Republic of Korea.
Micromachines (Basel). 2023 Jun 30;14(7):1353. doi: 10.3390/mi14071353.
This paper investigates the performance of deep convolutional spiking neural networks (DCSNNs) trained using spike-based backpropagation techniques. Specifically, the study examined temporal spike sequence learning via backpropagation (TSSL-BP) and surrogate gradient descent via backpropagation (SGD-BP) as effective techniques for training DCSNNs on the field programmable gate array (FPGA) platform for object classification tasks. The primary objective of this experimental study was twofold: (i) to determine the most effective backpropagation technique, TSSL-BP or SGD-BP, for deeper spiking neural networks (SNNs) with convolution filters across various datasets; and (ii) to assess the feasibility of deploying DCSNNs trained using backpropagation techniques on low-power FPGA for inference, considering potential configuration adjustments and power requirements. The aforementioned objectives will assist in informing researchers and companies in this field regarding the limitations and unique perspectives of deploying DCSNNs on low-power FPGA devices. The study contributions have three main aspects: (i) the design of a low-power FPGA board featuring a deployable DCSNN chip suitable for object classification tasks; (ii) the inference of TSSL-BP and SGD-BP models with novel network architectures on the FPGA board for object classification tasks; and (iii) a comparative evaluation of the selected spike-based backpropagation techniques and the object classification performance of DCSNNs across multiple metrics using both public (MNIST, CIFAR10, KITTI) and private (INHA_ADAS, INHA_KLP) datasets.
本文研究了使用基于脉冲的反向传播技术训练的深度卷积脉冲神经网络(DCSNN)的性能。具体而言,该研究考察了通过反向传播进行的时间脉冲序列学习(TSSL-BP)和通过反向传播进行的替代梯度下降(SGD-BP),将其作为在现场可编程门阵列(FPGA)平台上训练DCSNN以执行目标分类任务的有效技术。这项实验研究的主要目标有两个:(i)确定对于具有卷积滤波器的更深层脉冲神经网络(SNN),在各种数据集上最有效的反向传播技术是TSSL-BP还是SGD-BP;(ii)考虑潜在的配置调整和功率需求,评估在低功耗FPGA上部署使用反向传播技术训练的DCSNN进行推理的可行性。上述目标将有助于该领域的研究人员和公司了解在低功耗FPGA设备上部署DCSNN的局限性和独特观点。该研究的贡献主要有三个方面:(i)设计了一种低功耗FPGA板,其具有适用于目标分类任务的可部署DCSNN芯片;(ii)在FPGA板上对具有新颖网络架构的TSSL-BP和SGD-BP模型进行目标分类任务的推理;(iii)使用公共(MNIST、CIFAR10、KITTI)和私有(INHA_ADAS、INHA_KLP)数据集,对选定的基于脉冲的反向传播技术和DCSNN在多个指标上的目标分类性能进行比较评估。