Singh Sarabdeep, Solay Leo Raj, Anand Sunny, Kumar Naveen, Ranjan Ravi, Singh Amandeep
Model Institute of Engineering and Technology, Jammu 181122, India.
Department of Electronics and Communication Engineering, Amity University, Noida 201313, India.
Micromachines (Basel). 2023 Jun 30;14(7):1357. doi: 10.3390/mi14071357.
This paper examines the performance of a Gate-Engineered Gate-All-Around Charge Plasma Nanowire Field Effect Transistor (GAA-DMG-GS-CP NW-FET) and the implementation of a common source (CS) amplifier circuit. The proposed GAA-DMG-GS-CP NW-FET incorporates dual-material gate (DMG) and gate stack (GS) as gate engineering techniques and its analog/RF performance parameters are compared to those of the Gate-All-Around Single-Material Gate Charge Plasma Nanowire Field Effect Transistor (GAA-SMG-CP NW-FET) device. Both Gate-All-Around (GAA) devices are designed using the Silvaco TCAD tool. GAA structures have demonstrated good gate control because the gate holds the channel, which is an inherent advantage for both devices discussed herein. The charge plasma dopingless technique is used, in which the source and drain regions are formed using metal contacts and necessary work functions rather than doping. This dopingless technique eliminates the need for doping, reducing fluctuations caused by random dopants and lowering the device's thermal budget. Gate engineering techniques such as DMG and GS significantly improved the current characteristics which played a crucial role in obtaining maximum gain for circuit designs. The lookup table (LUT) approach is used in the implementation of the CS amplifier circuit with the proposed device. The transient response of the circuit is analyzed with both the device structures where the gain achieved for the CS amplifier circuit using the proposed GAA-DMG-GS-CP NW-FET is 15.06 dB. The superior performance showcased by the proposed GAA-DMG-GS-CP NW-FET device with analog, RF and circuit analysis proves its strong candidature for future nanoscale and low-power applications.
本文研究了栅极工程全栅电荷等离子体纳米线场效应晶体管(GAA-DMG-GS-CP NW-FET)的性能以及共源(CS)放大器电路的实现。所提出的GAA-DMG-GS-CP NW-FET采用双材料栅极(DMG)和栅极堆叠(GS)作为栅极工程技术,并将其模拟/射频性能参数与全栅单材料栅极电荷等离子体纳米线场效应晶体管(GAA-SMG-CP NW-FET)器件的参数进行了比较。两种全栅(GAA)器件均使用Silvaco TCAD工具进行设计。GAA结构已证明具有良好的栅极控制能力,因为栅极能够控制沟道,这是本文所讨论的两种器件的固有优势。采用了电荷等离子体无掺杂技术,其中源极和漏极区域通过金属接触和必要的功函数形成,而不是通过掺杂形成。这种无掺杂技术消除了掺杂的需求,减少了由随机掺杂剂引起的波动,并降低了器件的热预算。诸如DMG和GS等栅极工程技术显著改善了电流特性,这在获得电路设计的最大增益方面发挥了关键作用。在所提出的器件实现CS放大器电路时采用了查找表(LUT)方法。使用这两种器件结构对电路的瞬态响应进行了分析,其中使用所提出的GAA-DMG-GS-CP NW-FET实现的CS放大器电路的增益为15.06 dB。所提出的GAA-DMG-GS-CP NW-FET器件在模拟、射频和电路分析方面展现出的卓越性能证明了其在未来纳米级和低功耗应用中的强大竞争力。