Suppr超能文献

将美国农业部食品分类系统与食品成分数据库整合,以对使用胰岛素的个体进行基于图像的膳食评估。

Integration of USDA Food Classification System and Food Composition Database for Image-Based Dietary Assessment among Individuals Using Insulin.

机构信息

Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN 47907, USA.

School of Electrical and Computer Engineering, College of Engineering, Purdue University, West Lafayette, IN 47907, USA.

出版信息

Nutrients. 2023 Jul 18;15(14):3183. doi: 10.3390/nu15143183.

Abstract

New imaging technologies to identify food can reduce the reporting burden of participants but heavily rely on the quality of the food image databases to which they are linked to accurately identify food images. The objective of this study was to develop methods to create a food image database based on the most commonly consumed U.S. foods and those contributing the most to energy. The objective included using a systematic classification structure for foods based on the standardized United States Department of Agriculture (USDA) What We Eat in America (WWEIA) food classification system that can ultimately be used to link food images to a nutrition composition database, the USDA Food and Nutrient Database for Dietary Studies (FNDDS). The food image database was built using images mined from the web that were fitted with bounding boxes, identified, annotated, and then organized according to classifications aligning with USDA WWEIA. The images were classified by food category and subcategory and then assigned a corresponding USDA food code within the USDA's FNDDS in order to systematically organize the food images and facilitate a linkage to nutrient composition. The resulting food image database can be used in food identification and dietary assessment.

摘要

开发用于识别食物的新型成像技术可以减轻参与者的报告负担,但严重依赖于与之相关联的食物图像数据库的质量,以准确识别食物图像。本研究的目的是开发一种基于美国最常见食物和对能量贡献最大的食物的方法来创建食物图像数据库。目标包括使用基于标准化美国农业部(USDA)“我们吃什么在美国”(WWEIA)食物分类系统的食物系统分类结构,该系统最终可用于将食物图像链接到营养成分数据库,即美国农业部食物和营养数据库膳食研究(FNDDS)。使用从网络中挖掘的图像构建食物图像数据库,这些图像配有边界框,经过识别、注释,然后根据与美国农业部 WWEIA 对齐的分类进行组织。图像按食物类别和子类进行分类,然后在 USDA 的 FNDDS 中分配相应的 USDA 食物代码,以便系统地组织食物图像并促进与营养成分的链接。由此产生的食物图像数据库可用于食物识别和饮食评估。

相似文献

8
Comparison of flavonoid intake assessment methods.黄酮类化合物摄入量评估方法的比较。
Food Funct. 2016 Sep 14;7(9):3748-59. doi: 10.1039/c4fo00234b. Epub 2016 Aug 12.

本文引用的文献

1
Large Scale Visual Food Recognition.大规模视觉食物识别。
IEEE Trans Pattern Anal Mach Intell. 2023 Aug;45(8):9932-9949. doi: 10.1109/TPAMI.2023.3237871. Epub 2023 Jun 30.
7
Dietary assessment toolkits: an overview.膳食评估工具包:概述。
Public Health Nutr. 2019 Mar;22(3):404-418. doi: 10.1017/S1368980018002951. Epub 2018 Nov 15.
10
Image-assisted dietary assessment: a systematic review of the evidence.图像辅助膳食评估:证据的系统评价
J Acad Nutr Diet. 2015 Jan;115(1):64-77. doi: 10.1016/j.jand.2014.09.015. Epub 2014 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验