Suppr超能文献

利用身体区域定位和改进的 C3D 网络实时识别和检测(双翅目:花蝇科)的理毛行为。

Real-Time Recognition and Detection of (Diptera: Trypetidae) Grooming Behavior Using Body Region Localization and Improved C3D Network.

机构信息

School of Computer Science, Yangtze University, Jingzhou 434023, China.

Jingzhou Yingtuo Technology Co., Ltd., Jingzhou 434023, China.

出版信息

Sensors (Basel). 2023 Jul 16;23(14):6442. doi: 10.3390/s23146442.

Abstract

Pest management has long been a critical aspect of crop protection. Insect behavior is of great research value as an important indicator for assessing insect characteristics. Currently, insect behavior research is increasingly based on the quantification of behavior. Traditional manual observation and analysis methods can no longer meet the requirements of data volume and observation time. In this paper, we propose a method based on region localization combined with an improved 3D convolutional neural network for six grooming behaviors of : head grooming, foreleg grooming, fore-mid leg grooming, mid-hind leg grooming, hind leg grooming, and wing grooming. The overall recognition accuracy reached 93.46%. We compared the results obtained from the detection model with manual observations; the average difference was about 12%. This shows that the model reached a level close to manual observation. Additionally, recognition time using this method is only one-third of that required for manual observation, making it suitable for real-time detection needs. Experimental data demonstrate that this method effectively eliminates the interference caused by the walking behavior of , enabling efficient and automated detection of grooming behavior. Consequently, it offers a convenient means of studying pest characteristics in the field of crop protection.

摘要

病虫害防治一直是作物保护的重要环节。昆虫行为是评估昆虫特征的重要指标,具有重要的研究价值。目前,昆虫行为研究越来越依赖于行为的量化。传统的手动观察和分析方法已经不能满足数据量和观察时间的要求。本文提出了一种基于区域定位和改进的 3D 卷积神经网络的方法,用于识别六种昆虫的梳理行为:头部梳理、前腿梳理、前中腿梳理、中后腿梳理、后腿梳理和翅膀梳理。整体识别准确率达到 93.46%。我们将检测模型的结果与手动观察结果进行了比较,平均差异约为 12%。这表明该模型达到了接近手动观察的水平。此外,使用这种方法进行识别的时间仅为手动观察所需时间的三分之一,因此非常适合实时检测需求。实验数据表明,该方法能够有效消除 的行走行为干扰,实现对梳理行为的高效、自动化检测。因此,它为作物保护领域研究害虫特征提供了一种便捷的手段。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77f2/10386511/a5ff9e00676a/sensors-23-06442-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验