Suppr超能文献

基于计算机视觉跟踪和深度学习的自动诱虫灯监测蛾类(鳞翅目)

An Automated Light Trap to Monitor Moths (Lepidoptera) Using Computer Vision-Based Tracking and Deep Learning.

机构信息

School of Engineering, Aarhus University, Finlandsgade 22, 8200 Aarhus N, Denmark.

NaturConsult, Skrænten 5, 9520 Skørping, Denmark.

出版信息

Sensors (Basel). 2021 Jan 6;21(2):343. doi: 10.3390/s21020343.

Abstract

Insect monitoring methods are typically very time-consuming and involve substantial investment in species identification following manual trapping in the field. Insect traps are often only serviced weekly, resulting in low temporal resolution of the monitoring data, which hampers the ecological interpretation. This paper presents a portable computer vision system capable of attracting and detecting live insects. More specifically, the paper proposes detection and classification of species by recording images of live individuals attracted to a light trap. An Automated Moth Trap (AMT) with multiple light sources and a camera was designed to attract and monitor live insects during twilight and night hours. A computer vision algorithm referred to as Moth Classification and Counting (MCC), based on deep learning analysis of the captured images, tracked and counted the number of insects and identified moth species. Observations over 48 nights resulted in the capture of more than 250,000 images with an average of 5675 images per night. A customized convolutional neural network was trained on 2000 labeled images of live moths represented by eight different classes, achieving a high validation F1-score of 0.93. The algorithm measured an average classification and tracking F1-score of 0.71 and a tracking detection rate of 0.79. Overall, the proposed computer vision system and algorithm showed promising results as a low-cost solution for non-destructive and automatic monitoring of moths.

摘要

昆虫监测方法通常非常耗时,并且需要在野外手动诱捕后对物种进行大量鉴定。昆虫诱捕器通常每周只维护一次,导致监测数据的时间分辨率很低,这阻碍了生态解释。本文提出了一种能够吸引和检测活体昆虫的便携式计算机视觉系统。具体来说,本文提出了通过记录吸引到灯光诱捕器的活体个体的图像来进行检测和分类的方法。设计了一种具有多个光源和摄像头的自动飞蛾诱捕器(AMT),以在黄昏和夜间吸引和监测活体昆虫。一种称为飞蛾分类和计数(MCC)的计算机视觉算法,基于对捕获图像的深度学习分析,跟踪和计算昆虫数量并识别飞蛾种类。超过 48 个夜晚的观察结果导致捕获了超过 25 万个图像,平均每晚捕获 5675 个图像。在 2000 张代表八个不同类别的活体飞蛾的标记图像上训练了一个定制的卷积神经网络,验证 F1 得分为 0.93。该算法的平均分类和跟踪 F1 得分为 0.71,跟踪检测率为 0.79。总的来说,所提出的计算机视觉系统和算法作为一种非破坏性和自动监测飞蛾的低成本解决方案显示出了有前景的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96fb/7825571/dacb67d2559e/sensors-21-00343-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验