Suppr超能文献

基于RIS的主动式移动网络下行链路干扰抑制:一种深度强化学习方法。

RIS-Aided Proactive Mobile Network Downlink Interference Suppression: A Deep Reinforcement Learning Approach.

作者信息

Wang Yingze, Sun Mengying, Cui Qimei, Chen Kwang-Cheng, Liao Yaxin

机构信息

National Engineering Laboratory for Mobile Network Technologies, Beijing University of Posts and Telecommunications, Beijing 100876, China.

Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA.

出版信息

Sensors (Basel). 2023 Jul 20;23(14):6550. doi: 10.3390/s23146550.

Abstract

A proactive mobile network (PMN) is a novel architecture enabling extremely low-latency communication. This architecture employs an open-loop transmission mode that prohibits all real-time control feedback processes and employs virtual cell technology to allocate resources non-exclusively to users. However, such a design also results in significant potential user interference and worsens the communication's reliability. In this paper, we propose introducing multi-reconfigurable intelligent surface (RIS) technology into the downlink process of the PMN to increase the network's capacity against interference. Since the PMN environment is complex and time varying and accurate channel state information cannot be acquired in real time, it is challenging to manage RISs to service the PMN effectively. We begin by formulating an optimization problem for RIS phase shifts and reflection coefficients. Furthermore, motivated by recent developments in deep reinforcement learning (DRL), we propose an asynchronous advantage actor-critic (A3C)-based method for solving the problem by appropriately designing the action space, state space, and reward function. Simulation results indicate that deploying RISs within a region can significantly facilitate interference suppression. The proposed A3C-based scheme can achieve a higher capacity than baseline schemes and approach the upper limit as the number of RISs increases.

摘要

主动式移动网络(PMN)是一种能够实现极低延迟通信的新型架构。该架构采用开环传输模式,禁止所有实时控制反馈过程,并采用虚拟小区技术非独占性地为用户分配资源。然而,这种设计也会导致显著的潜在用户干扰,并降低通信的可靠性。在本文中,我们建议将多可重构智能表面(RIS)技术引入PMN的下行链路过程,以提高网络的抗干扰能力。由于PMN环境复杂且时变,无法实时获取准确的信道状态信息,因此有效管理RIS以服务于PMN具有挑战性。我们首先针对RIS的相移和反射系数制定了一个优化问题。此外,受深度强化学习(DRL)最新进展的启发,我们提出了一种基于异步优势动作评论家(A3C)的方法,通过适当设计动作空间、状态空间和奖励函数来解决该问题。仿真结果表明,在一个区域内部署RIS可以显著促进干扰抑制。所提出的基于A3C的方案能够比基线方案实现更高的容量,并且随着RIS数量的增加接近上限。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a99/10384356/64f4bcbd5973/sensors-23-06550-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验