Suppr超能文献

可重构智能表面辅助无线通信中的强化学习研究综述

A Survey on Reinforcement Learning for Reconfigurable Intelligent Surfaces in Wireless Communications.

机构信息

Department of Intelligent Mechatronics Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic of Korea.

出版信息

Sensors (Basel). 2023 Feb 24;23(5):2554. doi: 10.3390/s23052554.

Abstract

A reconfigurable intelligent surface (RIS) is a development of conventional relay technology that can send a signal by reflecting the signal received from a transmitter to a receiver without additional power. RISs are a promising technology for future wireless communication due to their improvement of the quality of the received signal, energy efficiency, and power allocation. In addition, machine learning (ML) is widely used in many technologies because it can create machines that mimic human mindsets with mathematical algorithms without requiring direct human assistance. Meanwhile, it is necessary to implement a subfield of ML, reinforcement learning (RL), to automatically allow a machine to make decisions based on real-time conditions. However, few studies have provided comprehensive information related to RL algorithms-especially deep RL (DRL)-for RIS technology. Therefore, in this study, we provide an overview of RISs and an explanation of the operations and implementations of RL algorithms for optimizing the parameters of RIS technology. Optimizing the parameters of RISs can offer several benefits for communication systems, such as the maximization of the sum rate, user power allocation, and energy efficiency or the minimization of the information age. Finally, we highlight several issues to consider in implementing RL algorithms for RIS technology in wireless communications in the future and provide possible solutions.

摘要

可重构智能表面 (RIS) 是传统中继技术的发展,可以在不额外提供功率的情况下通过反射从发射器接收到的信号来发送信号。RIS 是未来无线通信的一项有前途的技术,因为它可以提高接收信号的质量、提高能源效率和功率分配。此外,机器学习 (ML) 在许多技术中得到了广泛应用,因为它可以使用数学算法创建模仿人类思维的机器,而无需直接人工干预。同时,有必要实现机器学习的一个子领域,即强化学习 (RL),以便机器能够根据实时条件自动做出决策。然而,很少有研究提供与 RL 算法(特别是深度 RL (DRL))相关的 RIS 技术的全面信息。因此,在本研究中,我们提供了 RIS 的概述,并解释了 RL 算法的操作和实现,以优化 RIS 技术的参数。优化 RIS 的参数可为通信系统带来多项益处,例如最大化和速率、用户功率分配和能量效率,或者最小化信息时代。最后,我们强调了在未来无线通信中实施 RIS 技术的 RL 算法时需要考虑的几个问题,并提供了可能的解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验