Suppr超能文献

基于Transformer网络的草地多时态高光谱分类

Multi-Temporal Hyperspectral Classification of Grassland Using Transformer Network.

作者信息

Zhao Xuanhe, Zhang Shengwei, Shi Ruifeng, Yan Weihong, Pan Xin

机构信息

College of Computer and Information Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.

College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.

出版信息

Sensors (Basel). 2023 Jul 24;23(14):6642. doi: 10.3390/s23146642.

Abstract

In recent years, grassland monitoring has shifted from traditional field surveys to remote-sensing-based methods, but the desired level of accuracy has not yet been obtained. Multi-temporal hyperspectral data contain valuable information about species and growth season differences, making it a promising tool for grassland classification. Transformer networks can directly extract long-sequence features, which is superior to other commonly used analysis methods. This study aims to explore the transformer network's potential in the field of multi-temporal hyperspectral data by fine-tuning it and introducing it into high-powered grassland detection tasks. Subsequently, the multi-temporal hyperspectral classification of grassland samples using the transformer network (MHCgT) is proposed. To begin, a total of 16,800 multi-temporal hyperspectral data were collected from grassland samples at different growth stages over several years using a hyperspectral imager in the wavelength range of 400-1000 nm. Second, the MHCgT network was established, with a hierarchical architecture, which generates a multi-resolution representation that is beneficial for grass hyperspectral time series' classification. The MHCgT employs a multi-head self-attention mechanism to extract features, avoiding information loss. Finally, an ablation study of MHCgT and comparative experiments with state-of-the-art methods were conducted. The results showed that the proposed framework achieved a high accuracy rate of 98.51% in identifying grassland multi-temporal hyperspectral which outperformed CNN, LSTM-RNN, SVM, RF, and DT by 6.42-26.23%. Moreover, the average classification accuracy of each species was above 95%, and the August mature period was easier to identify than the June growth stage. Overall, the proposed MHCgT framework shows great potential for precisely identifying multi-temporal hyperspectral species and has significant applications in sustainable grassland management and species diversity assessment.

摘要

近年来,草地监测已从传统的实地调查转向基于遥感的方法,但尚未达到所需的精度水平。多时相高光谱数据包含有关物种和生长季节差异的宝贵信息,使其成为草地分类的一个有前途的工具。Transformer网络可以直接提取长序列特征,这优于其他常用的分析方法。本研究旨在通过对Transformer网络进行微调并将其引入高性能草地检测任务,探索其在多时相高光谱数据领域的潜力。随后,提出了使用Transformer网络的草地样本多时相高光谱分类方法(MHCgT)。首先,使用波长范围为400-1000nm的高光谱成像仪,在几年内从不同生长阶段的草地样本中总共收集了16800个多时相高光谱数据。其次,建立了具有分层架构的MHCgT网络,该网络生成有利于草地高光谱时间序列分类的多分辨率表示。MHCgT采用多头自注意力机制来提取特征,避免信息丢失。最后,对MHCgT进行了消融研究,并与现有最先进的方法进行了对比实验。结果表明,所提出的框架在识别草地多时相高光谱方面达到了98.51%的高精度率,比CNN、LSTM-RNN、SVM、RF和DT高出6.42-26.23%。此外,每个物种的平均分类准确率均高于95%,8月成熟期比6月生长阶段更容易识别。总体而言,所提出的MHCgT框架在精确识别多时相高光谱物种方面显示出巨大潜力,在可持续草地管理和物种多样性评估中具有重要应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83d3/10385388/192e1daee89b/sensors-23-06642-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验