School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, China; Shanghai Artificial Intelligence Laboratory, Shanghai, 200232, China.
School of Big Data and Software Engineering, Chongqing University, Chongqing, 400044, China; Shanghai Artificial Intelligence Laboratory, Shanghai, 200232, China.
Neural Netw. 2023 Sep;166:215-224. doi: 10.1016/j.neunet.2023.07.013. Epub 2023 Jul 17.
Recently stereo image deraining has attracted lots of attention due to its superiority of abundant information from cross views. Exploring interaction information across stereo views is the key to improving the performance of stereo image deraining. In this paper, we design a general coarse-to-fine deraining framework for stereo rain streak and raindrop removal, called CDINet, comprising a stereo rain removal subnet and a stereo detail recovery subnet to restore images progressively. Two types of interaction modules are devised to explore interaction information for rain removal and detail recovery, respectively. Specifically, a global context interaction module is proposed to learn long-range dependencies of stereo images and remove rain by utilizing stereo structural information. A local detail interaction module is designed to model local contextual correlation, which aims at restoring the detail information by using neighborhood information from cross views. Extensive experiments are conducted on the two datasets including a synthetic rain streak removal dataset (RainKITTI) and a real raindrop removal dataset (Stereo Waterdrop), which demonstrates that our method sets new state-of-the-art deraining performance in terms of both quantitative and qualitative metrics with faster speed.
最近,立体图像去雨因其能够从多角度获取丰富信息的优势而受到广泛关注。探索立体图像之间的交互信息是提高立体图像去雨性能的关键。在本文中,我们设计了一个用于立体雨线和雨滴去除的通用粗到精去雨框架,称为 CDINet,它由一个立体去雨子网和一个立体细节恢复子网组成,用于逐步恢复图像。我们设计了两种交互模块,分别用于雨去除和细节恢复,以探索交互信息。具体来说,提出了一个全局上下文交互模块,以学习立体图像的远程依赖关系,并利用立体结构信息去除雨。设计了一个局部细节交互模块,用于建模局部上下文相关性,旨在通过利用来自多角度的邻域信息来恢复细节信息。我们在两个数据集上进行了广泛的实验,包括一个合成雨线去除数据集(RainKITTI)和一个真实雨滴去除数据集(Stereo Waterdrop),实验结果表明,我们的方法在定量和定性指标上都达到了新的最先进的去雨性能,同时具有更快的速度。