Wei Yanyan, Zhang Zhao, Wang Yang, Xu Mingliang, Yang Yi, Yan Shuicheng, Wang Meng
IEEE Trans Image Process. 2021;30:4788-4801. doi: 10.1109/TIP.2021.3074804. Epub 2021 May 7.
Single Image Deraining (SID) is a relatively new and still challenging topic in emerging vision applications, and most of the recently emerged deraining methods use the supervised manner depending on the ground-truth (i.e., using paired data). However, in practice it is rather common to encounter unpaired images in real deraining task. In such cases, how to remove the rain streaks in an unsupervised way will be a challenging task due to lack of constraints between images and hence suffering from low-quality restoration results. In this paper, we therefore explore the unsupervised SID issue using unpaired data, and propose a new unsupervised framework termed DerainCycleGAN for single image rain removal and generation, which can fully utilize the constrained transfer learning ability and circulatory structures of CycleGAN. In addition, we design an unsupervised rain attentive detector (UARD) for enhancing the rain information detection by paying attention to both rainy and rain-free images. Besides, we also contribute a new synthetic way of generating the rain streak information, which is different from the previous ones. Specifically, since the generated rain streaks have diverse shapes and directions, existing derianing methods trained on the generated rainy image by this way can perform much better for processing real rainy images. Extensive experimental results on synthetic and real datasets show that our DerainCycleGAN is superior to current unsupervised and semi-supervised methods, and is also highly competitive to the fully-supervised ones.
单图像去雨(SID)是新兴视觉应用中一个相对较新且仍具挑战性的课题,最近出现的大多数去雨方法都采用依赖于真实图像(即使用配对数据)的监督方式。然而,在实际的去雨任务中,遇到未配对图像是相当常见的。在这种情况下,由于图像之间缺乏约束,以无监督方式去除雨痕将是一项具有挑战性的任务,并且会导致恢复结果质量较低。因此,在本文中,我们使用未配对数据探索无监督的单图像去雨问题,并提出了一种新的无监督框架DerainCycleGAN用于单图像去雨和生成,它可以充分利用CycleGAN的约束迁移学习能力和循环结构。此外,我们设计了一种无监督雨注意力检测器(UARD),通过同时关注有雨和无雨图像来增强雨信息检测。此外,我们还贡献了一种新的生成雨痕信息的合成方法,这与以前的方法不同。具体来说,由于生成的雨痕具有不同的形状和方向,通过这种方式在生成的有雨图像上训练的现有去雨方法在处理真实有雨图像时可以表现得更好。在合成数据集和真实数据集上的大量实验结果表明,我们的DerainCycleGAN优于当前的无监督和半监督方法,并且与全监督方法相比也具有很强的竞争力。