Suppr超能文献

用于端到端基于方面的情感分析的基于块级依赖句法的模型。

Block-level dependency syntax based model for end-to-end aspect-based sentiment analysis.

作者信息

Xiang Yan, Zhang Jiqun, Guo Junjun

机构信息

Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650500, China; Yunnan Key Laboratory of Artificial Intelligence, Kunming University of Science and Technology, Kunming, 650500, China.

Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650500, China; Yunnan Key Laboratory of Artificial Intelligence, Kunming University of Science and Technology, Kunming, 650500, China.

出版信息

Neural Netw. 2023 Sep;166:225-235. doi: 10.1016/j.neunet.2023.05.008. Epub 2023 May 12.

Abstract

End-to-End aspect-based sentiment analysis (E2E-ABSA) aims to jointly extract aspect terms and identify their sentiment polarities. Although previous research has demonstrated that syntax knowledge can be beneficial for E2E-ABSA, standard syntax dependency parsing struggles to capture the block-level relation between aspect and opinion terms, which hinders the role of syntax in E2E-ABSA. To address this issue, this paper proposes a block-level dependency syntax parsing (BDEP) based model to enhance the performance of E2E-ABSA. BDEP is constructed by incorporating routine dependency syntax parsing and part-of-speech tagging, which enables the capture of block-level relations. Subsequently. the BDEP-guided interactive attention module (BDEP-IAM) is used to obtain the aspect-aware representation of each word. Finally the adaptive fusion module is leveraged to combine the semantic-syntactic representation to simultaneously extract the aspect term and identify aspect-orient sentiment polarity. The model is evaluated on five benchmark datasets, including Laptop14, Rest _ALL, Restaurant14, Restaurant15, and TWITTER, with F1 scores of 62.67%, 76.53%, 75.42%, 62.21%, and 58.03%, respectively. The results show that our model outperforms the other compared state-of-the-art (SOTA) methods on all datasets. Additionally, ablation experiments confirm the efficacy of BDEP and IAM in improving aspect-level sentiment analysis.

摘要

端到端基于方面的情感分析(E2E - ABSA)旨在联合提取方面术语并识别其情感极性。尽管先前的研究表明句法知识对E2E - ABSA有益,但标准的句法依存分析难以捕捉方面术语和观点术语之间的块级关系,这阻碍了句法在E2E - ABSA中的作用。为了解决这个问题,本文提出了一种基于块级依存句法分析(BDEP)的模型来提高E2E - ABSA的性能。BDEP通过结合常规依存句法分析和词性标注构建,这使得能够捕捉块级关系。随后,使用BDEP引导的交互式注意力模块(BDEP - IAM)来获得每个单词的方面感知表示。最后,利用自适应融合模块组合语义 - 句法表示,以同时提取方面术语并识别方面导向的情感极性。该模型在五个基准数据集上进行了评估,包括Laptop14、Rest_ALL、Restaurant14、Restaurant15和TWITTER,F1分数分别为62.67%、76.53%、75.42%、62.21%和58.03%。结果表明,我们的模型在所有数据集上均优于其他相比的现有最先进(SOTA)方法。此外,消融实验证实了BDEP和IAM在改进方面级情感分析方面的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验