Zhao Qin, Yang Fuli, An Dongdong, Lian Jie
Department of Computer Science and Technology, Shanghai Normal University, Shanghai 200234, China.
Key Laboratory of Embedded Systems and Service Computing of Ministry of Education, Tongji University, Shanghai 201804, China.
Sensors (Basel). 2024 Jan 10;24(2):418. doi: 10.3390/s24020418.
Aspect-based sentiment analysis is a fine-grained task where the key goal is to predict sentiment polarities of one or more aspects in a given sentence. Currently, graph neural network models built upon dependency trees are widely employed for aspect-based sentiment analysis tasks. However, most existing models still contain a large amount of noisy nodes that cannot precisely capture the contextual relationships between specific aspects. Meanwhile, most studies do not consider the connections between nodes without direct dependency edges but play critical roles in determining the sentiment polarity of an aspect. To address the aforementioned limitations, we propose a Structured Dependency Tree-based Graph Convolutional Network (SDTGCN) model. Specifically, we explore construction of a structured syntactic dependency graph by incorporating positional information, sentiment commonsense knowledge, part-of-speech tags, syntactic dependency distances, etc., to assign arbitrary edge weights between nodes. This enhances the connections between aspect nodes and pivotal words while weakening irrelevant node links, enabling the model to sufficiently express sentiment dependencies between specific aspects and contextual information. We utilize part-of-speech tags and dependency distances to discover relationships between pivotal nodes without direct dependencies. Finally, we aggregate node information by fully considering their importance to obtain precise aspect representations. Experimental results on five publicly available datasets demonstrate the superiority of our proposed model over state-of-the-art approaches; furthermore, the accuracy and F1-score show a significant improvement on the majority of datasets, with increases of 0.74, 0.37, 0.65, and 0.79, 0.75, 1.17, respectively. This series of enhancements highlights the effective progress made by the STDGCN model in enhancing sentiment classification performance.
基于方面的情感分析是一项细粒度任务,其关键目标是预测给定句子中一个或多个方面的情感极性。目前,基于依存树构建的图神经网络模型被广泛应用于基于方面的情感分析任务。然而,大多数现有模型仍然包含大量噪声节点,无法精确捕捉特定方面之间的上下文关系。同时,大多数研究没有考虑没有直接依存边但在确定方面的情感极性中起关键作用的节点之间的连接。为了解决上述局限性,我们提出了一种基于结构化依存树的图卷积网络(SDTGCN)模型。具体来说,我们通过纳入位置信息、情感常识知识、词性标签、句法依存距离等,探索构建结构化句法依存图,以在节点之间分配任意边权重。这增强了方面节点与关键单词之间的连接,同时削弱了不相关的节点链接,使模型能够充分表达特定方面与上下文信息之间的情感依存关系。我们利用词性标签和依存距离来发现没有直接依存关系的关键节点之间的关系。最后,我们通过充分考虑节点的重要性来聚合节点信息,以获得精确的方面表示。在五个公开可用数据集上的实验结果证明了我们提出的模型优于现有最先进的方法;此外,准确率和F1分数在大多数数据集上都有显著提高,分别提高了0.74、0.37、0.65和0.79、0.75、1.17。这一系列的改进突出了STDGCN模型在提高情感分类性能方面取得的有效进展。