ToxStrategies, Austin, TX, USA.
ToxStrategies, Asheville, NC, USA.
Regul Toxicol Pharmacol. 2023 Sep;143:105464. doi: 10.1016/j.yrtph.2023.105464. Epub 2023 Jul 27.
In 2005, the World Health Organization (WHO) re-evaluated Toxic Equivalency factors (TEFs) developed for dioxin-like compounds believed to act through the Ah receptor based on an updated database of relative estimated potency (REP)(REP database). This re-evalution identified the need to develop a consistent approach for dose-response modeling. Further, the WHO Panel discussed the significant heterogeneity of experimental datasets and dataset quality underlying the REPs in the database. There is a critical need to develop a quantitative, and quality weighted approach to characterize the TEF for each congener. To address this, a multi-tiered approach that combines Bayesian dose-response fitting and meta-regression with a machine learning model to predict REPS' quality categorizations was developed to predict the most likely relationship between each congener and its reference and derive model-predicted TEF uncertainty distributions. As a proof of concept, this 'Best-Estimate TEF workflow' was applied to the REP database to derive TEF point-estimates and characterizations of uncertainty for all congeners. Model-TEFs were similar to the 2005 WHO TEFs, with the data-poor congeners having larger levels of uncertainty. This transparent and reproducible computational workflow incorporates WHO expert panel recommendations and represents a substantial improvement in the TEF methodology.
2005 年,世界卫生组织(世卫组织)根据相对效价估计(REP)数据库中更新的数据库,重新评估了据信通过 Ah 受体起作用的类二恶英化合物的毒性等效系数(TEF)。这次重新评估确定需要开发一种一致的剂量反应建模方法。此外,世卫组织专家组还讨论了数据库中 REP 所依据的实验数据集和数据集质量的显著异质性。迫切需要开发一种定量的、质量加权的方法来描述每个同类物的 TEF。为了解决这个问题,开发了一种多层次的方法,将贝叶斯剂量反应拟合和元回归与机器学习模型相结合,以预测 REP 的质量分类,从而预测每个同类物与其参照物之间最可能的关系,并得出模型预测的 TEF 不确定性分布。作为概念验证,该“最佳估计 TEF 工作流程”应用于 REP 数据库,为所有同类物推导出 TEF 点估计值和不确定性特征。模型-TEF 与 2005 年世卫组织 TEF 相似,数据较少的同类物具有更大的不确定性水平。这种透明且可重复的计算工作流程纳入了世卫组织专家小组的建议,代表着 TEF 方法学的重大改进。