Suppr超能文献

现实生活队列中阻塞性睡眠呼吸暂停的多导睡眠图表型:一种病理生理学方法

Polysomnographic Phenotypes of Obstructive Sleep Apnea in a Real-Life Cohort: A Pathophysiological Approach.

作者信息

Gasa Mercè, Salord Neus, Fontanilles Eva, Pérez Ramos Sandra, Prado Eliseo, Pallarés Natalia, Santos Pérez Salud, Monasterio Carmen

机构信息

Sleep Unit, Respiratory Department, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain; Section of Respiratory Medicine, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain; Department of Medicine, Campus Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain.

Sleep Unit, Respiratory Department, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain; Section of Respiratory Medicine, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain.

出版信息

Arch Bronconeumol. 2023 Oct;59(10):638-644. doi: 10.1016/j.arbres.2023.07.007. Epub 2023 Jul 17.

Abstract

INTRODUCTION

Obstructive sleep apnea (OSA) is heterogeneous and complex, but its severity is still based on the apnea-hypoapnea index (AHI). The present study explores using cluster analysis (CA), the additional information provided from routine polysomnography (PSG) to optimize OSA categorization.

METHODS

Cross-sectional study of OSA subjects diagnosed by PSG in a tertiary hospital sleep unit during 2016-2020. PSG, demographical, clinical variables, and comorbidities were recorded. Phenotypes were constructed from PSG variables using CA. Results are shown as median (interquartile range).

RESULTS

981 subjects were studied: 41% females, age 56 years (45-66), overall AHI 23events/h (13-42) and body mass index (BMI) 30kg/m (27-34). Three PSG clusters were identified: Cluster 1: "Supine and obstructive apnea predominance" (433 patients, 44%). Cluster 2: "Central, REM and shorter-hypopnea predominance" (374 patients, 38%). Cluster 3: "Severe hypoxemic burden and higher wake after sleep onset" (174 patients, 18%). Based on classical OSA severity classification, subjects are distributed among the PSG clusters as severe OSA patients (AHI≥30events/h): 46% in cluster 1, 17% in cluster 2 and 36% in cluster 3; moderate OSA (15≤AHI<30events/h): 57% in cluster 1, 34% in cluster 2 and 9% in cluster 3; mild OSA (5≤AHI<15events/h): 28% in cluster 1, 68% in cluster 2 and 4% in cluster 3.

CONCLUSIONS

The CA identifies three specific PSG phenotypes that do not completely agree with classical OSA severity classification. This emphasized that using a simplistic AHI approach, the OSA severity is assessed by an incorrect or incomplete analysis of the heterogeneity of the disorder.

摘要

引言

阻塞性睡眠呼吸暂停(OSA)具有异质性且复杂,但其严重程度仍基于呼吸暂停低通气指数(AHI)。本研究探索使用聚类分析(CA),利用常规多导睡眠图(PSG)提供的额外信息来优化OSA分类。

方法

对2016年至2020年期间在一家三级医院睡眠科通过PSG诊断为OSA的患者进行横断面研究。记录PSG、人口统计学、临床变量和合并症。使用CA从PSG变量构建表型。结果以中位数(四分位间距)表示。

结果

共研究了981名受试者:41%为女性,年龄56岁(45 - 66岁),总体AHI为23次/小时(13 - 42次/小时),体重指数(BMI)为30kg/m²(27 - 34)。识别出三个PSG聚类:聚类1:“仰卧位和阻塞性呼吸暂停为主”(433例患者,44%)。聚类2:“中枢性、快速眼动期和较短低通气为主”(374例患者,38%)。聚类3:“严重低氧负荷和睡眠起始后觉醒增加”(174例患者,18%)。根据经典的OSA严重程度分类,受试者在PSG聚类中的分布如下:重度OSA患者(AHI≥30次/小时):聚类1中占46%,聚类2中占17%,聚类3中占36%;中度OSA(15≤AHI<30次/小时):聚类1中占57%,聚类2中占34%,聚类3中占9%;轻度OSA(5≤AHI<15次/小时):聚类1中占28%,聚类2中占68%,聚类3中占4%。

结论

CA识别出三种特定的PSG表型,它们与经典的OSA严重程度分类并不完全一致。这强调了使用简单的AHI方法时,对该疾病异质性的评估是不正确或不完整的,从而导致对OSA严重程度的评估有误。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验