Suppr超能文献

韩国阻塞性睡眠呼吸暂停的多导睡眠图表型及其对死亡率的影响。

Polysomnographic phenotyping of obstructive sleep apnea and its implications in mortality in Korea.

机构信息

Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173th street, Bundang-gu, Seongnam, Gyeonggi-do, 13620, South Korea.

Department of Otorhinolaryngology Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.

出版信息

Sci Rep. 2020 Aug 6;10(1):13207. doi: 10.1038/s41598-020-70039-5.

Abstract

Conventionally, apnea-hypopnea index (AHI) is used to define and categorize the severity of obstructive sleep apnea. However, routine polysomnography (PSG) includes multiple parameters for assessing the severity of obstructive sleep apnea. The goal of this study is to identify and categorize obstructive sleep apnea phenotypes using unsupervised learning methods from routine PSG data. We identified four clusters from 4,603 patients by using 29 PSG variable and arranged according to their mean AHI. Cluster 1, spontaneous arousal (mean AHI = 8.52/h); cluster 2, poor sleep and periodic limb movements (mean AHI = 12.16/h); cluster 3, hypopnea (mean AHI = 38.60/h); and cluster 4, hypoxia (mean AHI = 69.66/h). Conventional obstructive sleep apnea classification based on apnea-hypopnea index severity showed no significant difference in cardiovascular or cerebrovascular mortality (Log rank P = 0.331), while 4 clusters showed an overall significant difference (Log rank P = 0.009). The risk of cardiovascular or cerebrovascular mortality was significantly increased in cluster 2 (hazard ratio = 6.460, 95% confidence interval 1.734-24.073) and cluster 4 (hazard ratio = 4.844, 95% confidence interval 1.300-18.047) compared to cluster 1, which demonstrated the lowest mortality. After adjustment for age, sex, body mass index, and underlying medical condition, only cluster 4 showed significantly increased risk of mortality compared to cluster 1 (hazard ratio = 7.580, 95% confidence interval 2.104-34.620). Phenotyping based on numerous PSG parameters gives additional information on patients' risk evaluation. Physicians should be aware of PSG features for further understanding the pathophysiology and personalized treatment.

摘要

传统上,呼吸暂停低通气指数(AHI)用于定义和分类阻塞性睡眠呼吸暂停的严重程度。然而,常规多导睡眠图(PSG)包括多个参数用于评估阻塞性睡眠呼吸暂停的严重程度。本研究的目的是使用无监督学习方法从常规 PSG 数据中识别和分类阻塞性睡眠呼吸暂停表型。我们通过使用 29 个 PSG 变量从 4603 名患者中识别出 4 个聚类,并根据平均 AHI 进行排列。聚类 1,自发性觉醒(平均 AHI=8.52/h);聚类 2,睡眠不佳和周期性肢体运动(平均 AHI=12.16/h);聚类 3,呼吸暂停(平均 AHI=38.60/h);聚类 4,缺氧(平均 AHI=69.66/h)。基于 AHI 严重程度的传统阻塞性睡眠呼吸暂停分类,在心血管或脑血管死亡率方面没有显著差异(对数秩 P=0.331),而 4 个聚类总体上有显著差异(对数秩 P=0.009)。与聚类 1 相比,聚类 2(危险比=6.460,95%置信区间 1.734-24.073)和聚类 4(危险比=4.844,95%置信区间 1.300-18.047)的心血管或脑血管死亡率风险显著增加,而聚类 1 的死亡率最低。在校正年龄、性别、体重指数和基础疾病后,与聚类 1 相比,只有聚类 4 的死亡率风险显著增加(危险比=7.580,95%置信区间 2.104-34.620)。基于大量 PSG 参数的表型分析为患者的风险评估提供了额外信息。医生应该了解 PSG 特征,以进一步了解病理生理学和个性化治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc85/7411028/3aac75e197df/41598_2020_70039_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验