The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA.
Nat Commun. 2023 Jul 29;14(1):4566. doi: 10.1038/s41467-023-40173-5.
Accurate cell type identification is a key and rate-limiting step in single-cell data analysis. Single-cell references with comprehensive cell types, reproducible and functionally validated cell identities, and common nomenclatures are much needed by the research community for automated cell type annotation, data integration, and data sharing. Here, we develop a computational pipeline utilizing the LungMAP CellCards as a dictionary to consolidate single-cell transcriptomic datasets of 104 human lungs and 17 mouse lung samples to construct LungMAP single-cell reference (CellRef) for both normal human and mouse lungs. CellRefs define 48 human and 40 mouse lung cell types catalogued from diverse anatomic locations and developmental time points. We demonstrate the accuracy and stability of LungMAP CellRefs and their utility for automated cell type annotation of both normal and diseased lungs using multiple independent methods and testing data. We develop user-friendly web interfaces for easy access and maximal utilization of the LungMAP CellRefs.
准确的细胞类型识别是单细胞数据分析的关键和限速步骤。单细胞参考资料需要具有全面的细胞类型、可重复和功能验证的细胞身份以及常见的命名法,这是研究界自动化细胞类型注释、数据集成和数据共享所急需的。在这里,我们开发了一个计算管道,利用 LungMAP CellCards 作为字典,整合了 104 个人肺和 17 个小鼠肺样本的单细胞转录组数据集,构建了用于正常人和小鼠肺的 LungMAP 单细胞参考 (CellRef)。CellRefs 定义了 48 个人类和 40 种小鼠肺细胞类型,这些细胞类型来自不同的解剖位置和发育时间点。我们使用多种独立的方法和测试数据证明了 LungMAP CellRefs 的准确性和稳定性,以及它们在正常和患病肺的自动细胞类型注释中的实用性。我们开发了用户友好的网络界面,方便访问和最大限度地利用 LungMAP CellRefs。