Universidad Nacional de Colombia, Bogotá, Colombia; Fundación Cardioinfantil - Instituto de Cardiología, Bogotá, Colombia.
Universidad Nacional de Colombia, Bogotá, Colombia.
Enferm Intensiva (Engl Ed). 2024 Apr-Jun;35(2):89-96. doi: 10.1016/j.enfie.2023.07.005. Epub 2023 Jul 28.
The study aims to characterise Postintensive Care Syndrome by classifying the severity of the disease and identifying the variables of influence in two highly complex intensive care units for adults in Colombia.
A descriptive, cross-sectional, prospective study was carried out to characterise survivors of critical illness using the Healthy Aging Brain Care -Monitor in a sample of 135 patients. Postintensive Care Syndrome severity was classified using Gaussian Mixture Models for clustering, and the most influencing variables were identified through ordinal logistic regression.
Clustering based on Gaussian Mixture Models allowed the classification of Postintensive Care Syndrome severity into mild, moderate, and severe classes, with an Akaike Information Criterion of 308 and an area under the curve of 0.80, which indicates a good fit; Thus, the mild class was characterised by a score on the HABC-M Total scale ≤9; the moderate class for a HABC-M Total score ≥10 and ≤42 and the severe class for a HABC-M Total score ≥43. Regarding the most influencing variables, the probability of belonging to the moderate or severe classes was related to male sex (91%), APACHE II score (22.5%), age (13%), intensive care units days of stay (10.6%), the use of sedation, analgesia and neuromuscular blockers.
Intensive care units survivors were characterised using the Healthy Aging Brain Care-Monitor scale, which made it possible to classify Postintensive Care Syndrome through Gaussian Mixture Models clustering into mild, moderate, and severe and to identify variables that had the major influence on the presentation of Postintensive Care Syndrome.
本研究旨在通过对哥伦比亚两家成人重症监护病房的疾病严重程度进行分类,对 ICU 后综合征进行特征描述,并确定影响因素变量。
本研究采用描述性、横断面、前瞻性方法,对 135 例危重病幸存者使用 Healthy Aging Brain Care-Monitor 进行特征描述。采用高斯混合模型对 ICU 后综合征严重程度进行聚类分类,并通过有序逻辑回归确定最具影响的变量。
基于高斯混合模型的聚类分析允许将 ICU 后综合征严重程度分为轻度、中度和重度三类,Akaike 信息准则为 308,曲线下面积为 0.80,表明拟合良好;因此,轻度类的特征是 HABC-M 总评分≤9;中度类的 HABC-M 总评分≥10 且≤42;重度类的 HABC-M 总评分≥43。关于最具影响的变量,属于中度或重度类的概率与男性(91%)、APACHE II 评分(22.5%)、年龄(13%)、重症监护病房停留天数(10.6%)、镇静、镇痛和神经肌肉阻滞剂的使用有关。
本研究使用 Healthy Aging Brain Care-Monitor 量表对重症监护病房幸存者进行特征描述,通过高斯混合模型聚类对 ICU 后综合征进行分类,分为轻度、中度和重度,并确定了对 ICU 后综合征表现影响最大的变量。