Suppr超能文献

试验中基于时相水平的加速度计数据的多重插补方法。

Multiple imputation approaches for epoch-level accelerometer data in trials.

机构信息

Department of Medical Statistics, London School of Hygiene and Tropical Medicine, UK.

Population Health Research Institute, St George's, University of London, UK.

出版信息

Stat Methods Med Res. 2023 Oct;32(10):1936-1960. doi: 10.1177/09622802231188518. Epub 2023 Jul 31.

Abstract

Clinical trials that investigate physical activity interventions often use accelerometers to measure step count at a very granular level, for example in 5-second epochs. Participants typically wear the accelerometer for a week-long period at baseline, and for one or more week-long follow-up periods after the intervention. The data is aggregated to provide daily or weekly step counts for the primary analysis. Missing data are common as participants may not wear the device as per protocol. Approaches to handling missing data in the literature have defined missingness on the day level using a threshold on daily weartime, which leads to loss of information on the time of day when data are missing. We propose an approach to identifying and classifying missingness at the finer epoch-level and present two approaches to handling missingness using multiple imputation. Firstly, we present a parametric approach which accounts for the number of missing epochs per day. Secondly, we describe a non-parametric approach where missing periods during the day are replaced by donor data from the same person where possible, or data from a different person who is matched on demographic and physical activity-related variables. Our simulation studies show that the non-parametric approach leads to estimates of the effect of treatment that are least biased while maintaining small standard errors. We illustrate the application of these different multiple imputation strategies to the analysis of the 2017 PACE-UP trial. The proposed framework is likely to be applicable to other digital health outcomes and to other wearable devices.

摘要

临床试验经常使用加速度计来非常详细地测量步数,例如每 5 秒一个时间段。参与者通常在基线期佩戴加速度计一周,然后在干预后的一个或多个为期一周的随访期佩戴。数据被汇总,为主要分析提供每日或每周的步数。由于参与者可能未按规定佩戴设备,因此数据缺失很常见。文献中处理缺失数据的方法是在日水平上使用每日佩戴时间的阈值来定义缺失情况,这导致了缺失数据时的时间信息丢失。我们提出了一种在更精细的时间段级别识别和分类缺失情况的方法,并提出了两种使用多重插补处理缺失数据的方法。首先,我们提出了一种参数方法,该方法考虑了每天缺失的时间段数。其次,我们描述了一种非参数方法,其中在白天缺失的时间段可以由同一人的捐赠数据(如果可能)或与人口统计学和与身体活动相关的变量相匹配的其他人的数据来替换。我们的模拟研究表明,非参数方法导致的处理效果估计偏差最小,同时保持较小的标准误差。我们说明了这些不同的多重插补策略在 2017 年 PACE-UP 试验分析中的应用。所提出的框架可能适用于其他数字健康结果和其他可穿戴设备。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8633/10563375/198bcdea64af/10.1177_09622802231188518-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验