Suppr超能文献

用于处理缺失加速度计数据的热卡多重填补法

Hot Deck Multiple Imputation for Handling Missing Accelerometer Data.

作者信息

Butera Nicole M, Li Siying, Evenson Kelly R, Di Chongzhi, Buchner David M, LaMonte Michael J, LaCroix Andrea Z, Herring Amy

机构信息

Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill.

Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill.

出版信息

Stat Biosci. 2019 Jul;11(2):422-448. doi: 10.1007/s12561-018-9225-4. Epub 2018 Oct 29.

Abstract

Missing data due to non-wear are common in accelerometer studies measuring physical activity and sedentary behavior. Accelerometer output are high-dimensional time-series data that are episodic and often highly skewed, presenting unique challenges for handling missing data. Common methods for missing accelerometry either are ad-hoc, require restrictive parametric assumptions, or do not appropriately impute bouts. This study developed a flexible hot deck multiple imputation (MI; i.e., "replacing" missing data with observed values) procedure to handle missing accelerometry. For each missing segment of accelerometry, "donor pools" contained observed segments from either the same or different participants, and 10 imputed segments were randomly drawn from the donor pool according to selection weights, where the donor pool and selection weight depended on variables associated with non-wear and/or accelerometer-based measures. A simulation study of 2,550 women compared hot deck MI to two standard methods in the field: available case (AC) analysis (i.e., analyzing all observed accelerometry with no restriction on wear time or number of days) and complete case (CC) analysis (i.e., analyzing only participants that wore the accelerometer for ≥10 hours for 4-7 days). This was repeated using accelerometry from the entire 24-hour day and daytime (10am- 8pm) only, and data were missing at random. For the entire 24-hour day, MI produced less bias and better 95% confidence interval (CI) coverage than AC and CC. For the daytime only, MI produced less bias and better 95% CI coverage than AC; CC produced similar bias and 95% CI coverage, but longer 95% CIs than MI.

摘要

在测量身体活动和久坐行为的加速度计研究中,因未佩戴而导致的数据缺失很常见。加速度计输出的是高维时间序列数据,具有间歇性且往往高度偏态,这给处理缺失数据带来了独特挑战。处理缺失加速度计数据的常用方法要么是临时的,需要严格的参数假设,要么不能恰当地估算时间段。本研究开发了一种灵活的热卡多重填补(MI;即用观测值“替换”缺失数据)程序来处理缺失的加速度计数据。对于加速度计的每个缺失段,“供体池”包含来自相同或不同参与者的观测段,并且根据选择权重从供体池中随机抽取10个填补段,其中供体池和选择权重取决于与未佩戴和/或基于加速度计的测量相关的变量。一项对2550名女性的模拟研究将热卡多重填补与该领域的两种标准方法进行了比较:有效病例(AC)分析(即分析所有观测到的加速度计数据,对佩戴时间或天数无限制)和完整病例(CC)分析(即仅分析佩戴加速度计≥10小时达4 - 7天的参与者)。分别使用全天24小时和仅白天(上午10点至晚上8点)的加速度计数据重复此过程,且数据是随机缺失的。对于全天24小时,多重填补产生的偏差较小,95%置信区间(CI)覆盖情况优于有效病例分析和完整病例分析。仅对于白天,多重填补产生的偏差较小,95%CI覆盖情况优于有效病例分析;完整病例分析产生的偏差和95%CI覆盖情况相似,但95%CI比多重填补的更长。

相似文献

1
3
Imputation of missing data when measuring physical activity by accelerometry.通过加速度计测量身体活动时缺失数据的插补
Med Sci Sports Exerc. 2005 Nov;37(11 Suppl):S555-62. doi: 10.1249/01.mss.0000185651.59486.4e.
4

本文引用的文献

3
Missing value imputation for physical activity data measured by accelerometer.通过加速度计测量的身体活动数据的缺失值插补
Stat Methods Med Res. 2018 Feb;27(2):490-506. doi: 10.1177/0962280216633248. Epub 2016 Mar 17.
8
A Review of Hot Deck Imputation for Survey Non-response.调查无应答的热卡填充法综述
Int Stat Rev. 2010 Apr;78(1):40-64. doi: 10.1111/j.1751-5823.2010.00103.x.
10
Assessment of differing definitions of accelerometer nonwear time.加速度计非佩戴时间不同定义的评估
Res Q Exerc Sport. 2009 Jun;80(2):355-62. doi: 10.1080/02701367.2009.10599570.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验