Suppr超能文献

缺血性中风患者急性期后不良功能结局预测列线图模型的开发与验证

Development and validation of a nomogram model for predicting unfavorable functional outcomes in ischemic stroke patients after acute phase.

作者信息

Yan Chengjie, Zheng Yu, Zhang Xintong, Gong Chen, Wen Shibin, Zhu Yonggang, Jiang Yujuan, Li Xipeng, Fu Gaoyong, Pan Huaping, Teng Meiling, Xia Lingfeng, Li Jian, Qian Kun, Lu Xiao

机构信息

Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.

Department of Neurology, Jiuquan City People's Hospital, Jiuquan, China.

出版信息

Front Aging Neurosci. 2023 Jul 14;15:1161016. doi: 10.3389/fnagi.2023.1161016. eCollection 2023.

Abstract

INTRODUCTION

Prediction of post-stroke functional outcome is important for personalized rehabilitation treatment, we aimed to develop an effective nomogram for predicting long-term unfavorable functional outcomes in ischemic stroke patients after acute phase.

METHODS

We retrospectively analyzed clinical data, rehabilitation data, and longitudinal follow-up data from ischemic stroke patients who underwent early rehabilitation at multiple centers in China. An unfavorable functional outcome was defined as a modified Rankin Scale (mRS) score of 3-6 at 90 days after onset. Patients were randomly allocated to either a training or test cohort in a ratio of 4:1. Univariate and multivariate logistic regression analyses were used to identify the predictors for the development of a predictive nomogram. The area under the receiver operating characteristic curve (AUC) was used to evaluate predictive ability in both the training and test cohorts.

RESULTS

A total of 856 patients (training cohort: = 684; test cohort: = 172) were included in this study. Among them, 518 patients experienced unfavorable outcomes 90 days after ischemic stroke. Trial of ORG 10172 in Acute Stroke Treatment classification ( = 0.024), antihypertensive agents use [odds ratio (OR) = 1.86; = 0.041], 15-day Barthel Index score (OR = 0.930; < 0.001) and 15-day mRS score (OR = 13.494; < 0.001) were selected as predictors for the unfavorable outcome nomogram. The nomogram model showed good predictive performance in both the training (AUC = 0.950) and test cohorts (AUC = 0.942).

CONCLUSION

The constructed nomogram model could be a practical tool for predicting unfavorable functional outcomes in ischemic stroke patients underwent early rehabilitation after acute phase.

摘要

引言

预测卒中后功能结局对于个性化康复治疗很重要,我们旨在开发一种有效的列线图,用于预测缺血性卒中患者急性期后长期不良功能结局。

方法

我们回顾性分析了来自中国多个中心接受早期康复治疗的缺血性卒中患者的临床数据、康复数据和纵向随访数据。不良功能结局定义为发病90天后改良Rankin量表(mRS)评分为3 - 6分。患者按4:1的比例随机分配到训练组或测试组。采用单因素和多因素逻辑回归分析来确定预测列线图的预测因素。受试者工作特征曲线(AUC)下面积用于评估训练组和测试组的预测能力。

结果

本研究共纳入856例患者(训练组:n = 684;测试组:n = 172)。其中,518例患者在缺血性卒中90天后出现不良结局。急性卒中治疗中ORG 10172试验分类(P = 0.024)、使用抗高血压药物[比值比(OR)= 1.86;P = 0.041]、15天巴氏指数评分(OR = 0.930;P < 0.001)和15天mRS评分(OR = 13.494;P < 0.001)被选为不良结局列线图的预测因素。列线图模型在训练组(AUC = 0.950)和测试组(AUC = 0.942)中均显示出良好的预测性能。

结论

构建的列线图模型可能是预测急性期后接受早期康复治疗的缺血性卒中患者不良功能结局的实用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf04/10375043/048c23da72b1/fnagi-15-1161016-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验