Suppr超能文献

迈向先进生物过程优化:一种多尺度建模方法。

Towards advanced bioprocess optimization: A multiscale modelling approach.

作者信息

Monteiro Mariana, Fadda Sarah, Kontoravdi Cleo

机构信息

Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom.

出版信息

Comput Struct Biotechnol J. 2023 Jul 8;21:3639-3655. doi: 10.1016/j.csbj.2023.07.003. eCollection 2023.

Abstract

Mammalian cells produce up to 80 % of the commercially available therapeutic proteins, with Chinese Hamster Ovary (CHO) cells being the primary production host. Manufacturing involves a train of reactors, the last of which is typically run in fed-batch mode, where cells grow and produce the required protein. The feeding strategy is decided a priori, from either past operations or the design of experiments and rarely considers the current state of the process. This work proposes a Model Predictive Control (MPC) formulation based on a hybrid kinetic-stoichiometric reactor model to provide optimal feeding policies in real-time, which is agnostic to the culture, hence transferable across CHO cell culture systems. The benefits of the proposed controller formulation are demonstrated through a comparison between an open-loop simulation and closed-loop optimization, using a digital twin as an emulator of the process.

摘要

哺乳动物细胞生产了高达80%的市售治疗性蛋白质,其中中国仓鼠卵巢(CHO)细胞是主要的生产宿主。生产过程涉及一系列反应器,最后一个反应器通常以补料分批模式运行,细胞在该模式下生长并产生所需的蛋白质。补料策略是事先根据过去的操作或实验设计确定的,很少考虑过程的当前状态。这项工作提出了一种基于混合动力学-化学计量反应器模型的模型预测控制(MPC)公式,以实时提供最优补料策略,该策略与培养方式无关,因此可在CHO细胞培养系统之间转移。通过使用数字孪生作为过程模拟器,在开环模拟和闭环优化之间进行比较,证明了所提出的控制器公式的优点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2c8/10371800/06efeb9858db/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验