Suppr超能文献

生物过程的混合动态通量平衡建模方法:以大肠杆菌为例的案例研究。

Hybrid dynamic flux balance modeling approach for bioprocesses: an E. coli case study.

作者信息

Negahban Zahra, Ward Valerie, Richelle Anne, McCready Chris, Budman Hector

机构信息

Chemical Engineering Department, University of Waterloo, 200 University Avenue, Waterloo, ON, N2L 3G1, Canada.

Sartorius Corporate Research, Brussels, Belgium.

出版信息

Bioprocess Biosyst Eng. 2025 May;48(5):841-856. doi: 10.1007/s00449-025-03147-z. Epub 2025 Mar 25.

Abstract

In this study, we present a hybrid dynamic flux balance analysis (DFBA) model, combined with Partial Least Squares (PLS) regression, to simulate cell culture behavior in response to variations in media composition. DFBA models typically incorporate a stoichiometric matrix representing metabolic reactions, leveraging the pseudo-stationarity assumption to reduce the number of parameters, which in turn minimizes the risk of overfitting. Here, PLS regression is employed to define kinetic rate constraints within the DFBA model, capturing the dynamic and non-linear nature of reaction rates over different culture phases. An optimization approach identifies the minimal number of kinetic constraints required, ensuring model accuracy without excessive complexity. Our hybrid model is validated through simulation case studies using an E. coli system, demonstrating its effectiveness in adjusting to changes in initial media composition. The case studies reveal that the model's accuracy improves with a more detailed stoichiometric matrix, particularly when larger networks or more varied metabolic environments are present. Additionally, the hybrid DFBA-PLS approach provides a robust and scalable modeling framework adaptable to other bioprocesses, offering insights into medium composition effects and highlighting its potential for bioprocess optimization.

摘要

在本研究中,我们提出了一种结合偏最小二乘(PLS)回归的混合动态通量平衡分析(DFBA)模型,以模拟细胞培养行为对培养基成分变化的响应。DFBA模型通常包含一个代表代谢反应的化学计量矩阵,利用伪稳态假设来减少参数数量,从而将过度拟合的风险降至最低。在此,PLS回归用于定义DFBA模型中的动力学速率约束,捕捉不同培养阶段反应速率的动态和非线性性质。一种优化方法确定所需的最小动力学约束数量,确保模型准确性而不过度复杂。我们的混合模型通过使用大肠杆菌系统的模拟案例研究进行验证,证明了其在适应初始培养基成分变化方面的有效性。案例研究表明,随着化学计量矩阵更详细,模型的准确性会提高,特别是在存在更大网络或更多样化代谢环境的情况下。此外,混合DFBA-PLS方法提供了一个强大且可扩展的建模框架,适用于其他生物过程,深入了解培养基成分的影响,并突出其在生物过程优化方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验