Meng Xin, Ganapathy Srividya, van Roemburg Lars, Post Marco, Brinks Daan
Department of Imaging Physics, Delft University of Technology, 2628 CJ Delft, The Netherlands.
Department of Pediatrics & Cellular and Molecular Medicine, UCSD School of Medicine, La Jolla, California 92093, United States.
ACS Phys Chem Au. 2023 May 3;3(4):320-333. doi: 10.1021/acsphyschemau.3c00003. eCollection 2023 Jul 26.
Voltage imaging using genetically encoded voltage indicators (GEVIs) has taken the field of neuroscience by storm in the past decade. Its ability to create subcellular and network level readouts of electrical dynamics depends critically on the kinetics of the response to voltage of the indicator used. Engineered microbial rhodopsins form a GEVI subclass known for their high voltage sensitivity and fast response kinetics. Here we review the essential aspects of microbial rhodopsin photocycles that are critical to understanding the mechanisms of voltage sensitivity in these proteins and link them to insights from efforts to create faster, brighter and more sensitive microbial rhodopsin-based GEVIs.
在过去十年中,使用基因编码电压指示剂(GEVIs)进行电压成像在神经科学领域掀起了一场风暴。其创建亚细胞和网络水平电动力学读数的能力关键取决于所用指示剂对电压响应的动力学。工程化微生物视紫红质形成了一个GEVI亚类,以其高电压敏感性和快速响应动力学而闻名。在这里,我们回顾了微生物视紫红质光循环的基本方面,这些方面对于理解这些蛋白质中电压敏感性的机制至关重要,并将它们与为创建更快、更亮和更敏感的基于微生物视紫红质的GEVIs所做努力的见解联系起来。