Suppr超能文献

一种通过数据划分检测亚组治疗效果的综合检验。

AN OMNIBUS TEST FOR DETECTION OF SUBGROUP TREATMENT EFFECTS VIA DATA PARTITIONING.

作者信息

Sun Yifei, He Xuming, Hu Jianhua

机构信息

Department of Biostatistics, Columbia University.

Department of Statistics, University of Michigan.

出版信息

Ann Appl Stat. 2022 Dec;16(4):2266-2278. doi: 10.1214/21-AOAS1589. Epub 2022 Sep 26.

Abstract

Late-stage clinical trials have been conducted primarily to establish the efficacy of a new treatment in an intended population. A corollary of population heterogeneity in clinical trials is that a treatment might be effective for one or more subgroups, rather than for the whole population of interest. As an example, the phase III clinical trial of panitumumab in metastatic colorectal cancer patients failed to demonstrate its efficacy in the overall population, but a subgroup associated with tumor KRAS status was found to be promising (Peeters et al. ( 28 (2010) 4706-4713)). As we search for such subgroups via data partitioning based on a large number of biomarkers, we need to guard against inflated type I error rates due to multiple testing. Commonly-used multiplicity adjustments tend to lose power for the detection of subgroup treatment effects. We develop an effective omnibus test to detect the existence of, at least, one subgroup treatment effect, allowing a large number of possible subgroups to be considered and possibly censored outcomes. Applied to the panitumumab trial data, the proposed test would confirm a significant subgroup treatment effect. Empirical studies also show that the proposed test is applicable to a variety of outcome variables and maintains robust statistical power.

摘要

晚期临床试验主要是为了确定一种新疗法在目标人群中的疗效。临床试验中人群异质性的一个必然结果是,一种治疗方法可能对一个或多个亚组有效,而不是对整个感兴趣的人群有效。例如,帕尼单抗在转移性结直肠癌患者中的III期临床试验未能在总体人群中证明其疗效,但发现一个与肿瘤KRAS状态相关的亚组很有前景(Peeters等人,《临床肿瘤学杂志》28(2010)4706 - 4713)。当我们通过基于大量生物标志物的数据划分来寻找这些亚组时,我们需要防范由于多次检验导致的I型错误率膨胀。常用的多重性调整往往会降低检测亚组治疗效果的功效。我们开发了一种有效的综合检验方法,以检测至少一个亚组治疗效果的存在,允许考虑大量可能的亚组以及可能被删失的结果。应用于帕尼单抗试验数据时,所提出的检验将证实存在显著的亚组治疗效果。实证研究还表明,所提出的检验适用于各种结果变量,并保持强大的统计功效。

相似文献

4
Data-Driven Subgroup Identification in Confirmatory Clinical Trials.确证性临床试验中基于数据的亚组识别
Ther Innov Regul Sci. 2022 Jan;56(1):65-75. doi: 10.1007/s43441-021-00329-1. Epub 2021 Jul 29.
10
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

本文引用的文献

1
Testing for dependence on tree structures.检验对树结构的依赖。
Proc Natl Acad Sci U S A. 2020 May 5;117(18):9787-9792. doi: 10.1073/pnas.1912957117. Epub 2020 Apr 22.
5
Multiplicity considerations in subgroup analysis.亚组分析中的多重性考量
Stat Med. 2017 Dec 10;36(28):4446-4454. doi: 10.1002/sim.7416. Epub 2017 Aug 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验