Insinna Teresa, Bassey Euan N, Märker Katharina, Collauto Alberto, Barra Anne-Laure, Grey Clare P
Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
Centre for Pulse EPR (PEPR), Imperial College London, London W12 0BZ, United Kingdom.
Chem Mater. 2023 Jul 13;35(14):5497-5511. doi: 10.1021/acs.chemmater.3c00860. eCollection 2023 Jul 25.
Graphite is the most commercially successful anode material for lithium (Li)-ion batteries: its low cost, low toxicity, and high abundance make it ideally suited for use in batteries for electronic devices, electrified transportation, and grid-based storage. The physical and electrochemical properties of graphite anodes have been thoroughly characterized. However, questions remain regarding their electronic structures and whether the electrons occupy localized states on Li, delocalized states on C, or an admixture of both. In this regard, electron paramagnetic resonance (EPR) spectroscopy is an invaluable tool for characterizing the electronic states generated during electrochemical cycling as it measures the properties of the unpaired electrons in lithiated graphites. In this work, variable-temperature (10-300 K), variable-frequency (9-441 GHz) EPR was carried out to extract the tensors and line widths and understand the effect of metallicity on the observed EPR spectra of electrochemically lithiated graphites at four different states of lithiation. We show that the increased resolution offered by EPR at high frequencies (>300 GHz) enables up to three different electron environments of axial symmetry to be observed, revealing heterogeneity within the graphite particles and the presence of hyperfine coupling to Li nuclei. Importantly, our work demonstrates the power of EPR spectroscopy to investigate the local electronic structure of graphite at different lithiation stages, paving the way for this technique as a tool for screening and investigating novel materials for use in Li-ion batteries.
其低成本、低毒性和高丰度使其非常适合用于电子设备、电动交通工具和基于电网的储能电池。石墨负极的物理和电化学性质已得到充分表征。然而,关于它们的电子结构以及电子是占据锂上的局域态、碳上的离域态还是两者的混合态,仍然存在问题。在这方面,电子顺磁共振(EPR)光谱是表征电化学循环过程中产生的电子态的宝贵工具,因为它测量锂化石墨中未成对电子的性质。在这项工作中,进行了变温(10 - 300 K)、变频(9 - 441 GHz)的EPR实验,以提取张量和线宽,并了解金属性对四种不同锂化状态下电化学锂化石墨的EPR光谱的影响。我们表明,高频(>300 GHz)EPR提供的更高分辨率能够观察到多达三种不同的轴对称电子环境,揭示了石墨颗粒内部的不均匀性以及与锂核的超精细耦合的存在。重要的是,我们的工作证明了EPR光谱在研究不同锂化阶段石墨的局部电子结构方面的强大作用,为该技术作为筛选和研究用于锂离子电池的新型材料的工具铺平了道路。