Suppr超能文献

基于 COVID-19 住院患者合并症的机械通气预测模型的建立和验证。

Development and validation of a prediction model for mechanical ventilation based on comorbidities in hospitalized patients with COVID-19.

机构信息

Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China.

Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.

出版信息

Front Public Health. 2023 Jul 14;11:1227935. doi: 10.3389/fpubh.2023.1227935. eCollection 2023.

Abstract

BACKGROUND

Timely recognition of respiratory failure and the need for mechanical ventilation is crucial in managing patients with coronavirus disease 2019 (COVID-19) and reducing hospital mortality rate. A risk stratification tool could assist to avoid clinical deterioration of patients with COVID-19 and optimize allocation of scarce resources. Therefore, we aimed to develop a prediction model for early identification of patients with COVID-19 who may require mechanical ventilation.

METHODS

We included patients with COVID-19 hospitalized in United States. Demographic and clinical data were extracted from the records of the Healthcare Cost and Utilization Project State Inpatient Database in 2020. Model construction involved the use of the least absolute shrinkage and selection operator and multivariable logistic regression. The model's performance was evaluated based on discrimination, calibration, and clinical utility.

RESULTS

The training set comprised 73,957 patients (5,971 requiring mechanical ventilation), whereas the validation set included 10,428 (887 requiring mechanical ventilation). The prediction model incorporating age, sex, and 11 other comorbidities (deficiency anemias, congestive heart failure, coagulopathy, dementia, diabetes with chronic complications, complicated hypertension, neurological disorders unaffecting movement, obesity, pulmonary circulation disease, severe renal failure, and weight loss) demonstrated moderate discrimination (area under the curve, 0.715; 95% confidence interval, 0.709-0.722), good calibration (Brier score = 0.070, slope = 1, intercept = 0) and a clinical net benefit with a threshold probability ranged from 2 to 34% in the training set. Similar model's performances were observed in the validation set.

CONCLUSION

A robust prognostic model utilizing readily available predictors at hospital admission was developed for the early identification of patients with COVID-19 who may require mechanical ventilation. Application of this model could support clinical decision-making to optimize patient management and resource allocation.

摘要

背景

及时识别呼吸衰竭和机械通气的需求对于管理 2019 冠状病毒病(COVID-19)患者并降低医院死亡率至关重要。风险分层工具可以帮助避免 COVID-19 患者的临床恶化,并优化稀缺资源的分配。因此,我们旨在开发一种预测模型,以便早期识别可能需要机械通气的 COVID-19 患者。

方法

我们纳入了在美国住院的 COVID-19 患者。2020 年从医疗保健成本和利用项目州住院数据库的记录中提取人口统计学和临床数据。模型构建涉及使用最小绝对收缩和选择算子和多变量逻辑回归。根据判别、校准和临床实用性评估模型的性能。

结果

训练集包括 73957 例患者(5971 例需要机械通气),验证集包括 10428 例(887 例需要机械通气)。纳入年龄、性别和 11 种其他合并症(营养性贫血、充血性心力衰竭、凝血障碍、痴呆、有慢性并发症的糖尿病、复杂高血压、不影响运动的神经系统疾病、肥胖、肺循环疾病、严重肾衰竭和体重减轻)的预测模型显示出中等的判别能力(曲线下面积为 0.715;95%置信区间为 0.709-0.722)、良好的校准(Brier 评分=0.070,斜率=1,截距=0)和临床净效益,在训练集中,阈值概率范围为 2%至 34%。在验证集中也观察到了类似的模型性能。

结论

我们开发了一种基于入院时易于获得的预测因素的强大预后模型,用于早期识别可能需要机械通气的 COVID-19 患者。该模型的应用可以支持临床决策,以优化患者管理和资源分配。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d41/10375294/ac09b3f8bf0e/fpubh-11-1227935-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验